The role of copper in transforming CuxCoCrNiAl high-entropy alloys for enhanced strength and ductility

IF 4.8 2区 材料科学 Q1 MATERIALS SCIENCE, CHARACTERIZATION & TESTING
Fa-Chang Zhao , Guo-Ning Ji , Xing-Ming Zhao, Rong-Da Zhao, Fu-Fa Wu
{"title":"The role of copper in transforming CuxCoCrNiAl high-entropy alloys for enhanced strength and ductility","authors":"Fa-Chang Zhao ,&nbsp;Guo-Ning Ji ,&nbsp;Xing-Ming Zhao,&nbsp;Rong-Da Zhao,&nbsp;Fu-Fa Wu","doi":"10.1016/j.matchar.2025.114973","DOIUrl":null,"url":null,"abstract":"<div><div>This study conducted a detailed analysis of the microstructure evolution and mechanical properties of a series of Cu<sub><em>x</em></sub>CoCrNiAl high-entropy alloys (HEAs) to assess the influence of Cu content on HEAs. The findings indicated that with increasing Cu content, the alloy's phase structure changed from FCC1 + FCC2 (AlCu) + BCC to FCC phase. As the Cu content rose from 20 % to 80 %, the hardness of the alloy decreased progressively from 515 HV to 135 HV, and the ultimate tensile strength reduced from 1335 MPa to 524 MPa. The fracture mechanism shifted from a mixed brittle-ductile fracture to a ductile fracture. Consequently, the Cu<sub>4</sub>CoCrNiAl HEA (CA50) demonstrated superior overall mechanical properties, with hardness, yield strength, ultimate tensile strength, and elongation measured at 321 HV, 556 MPa, 846 MPa, and 16.4 %, respectively. This research is significant for the advancement of engineering and structural materials with outstanding mechanical properties.</div></div>","PeriodicalId":18727,"journal":{"name":"Materials Characterization","volume":"223 ","pages":"Article 114973"},"PeriodicalIF":4.8000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Characterization","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1044580325002621","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0

Abstract

This study conducted a detailed analysis of the microstructure evolution and mechanical properties of a series of CuxCoCrNiAl high-entropy alloys (HEAs) to assess the influence of Cu content on HEAs. The findings indicated that with increasing Cu content, the alloy's phase structure changed from FCC1 + FCC2 (AlCu) + BCC to FCC phase. As the Cu content rose from 20 % to 80 %, the hardness of the alloy decreased progressively from 515 HV to 135 HV, and the ultimate tensile strength reduced from 1335 MPa to 524 MPa. The fracture mechanism shifted from a mixed brittle-ductile fracture to a ductile fracture. Consequently, the Cu4CoCrNiAl HEA (CA50) demonstrated superior overall mechanical properties, with hardness, yield strength, ultimate tensile strength, and elongation measured at 321 HV, 556 MPa, 846 MPa, and 16.4 %, respectively. This research is significant for the advancement of engineering and structural materials with outstanding mechanical properties.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials Characterization
Materials Characterization 工程技术-材料科学:表征与测试
CiteScore
7.60
自引率
8.50%
发文量
746
审稿时长
36 days
期刊介绍: Materials Characterization features original articles and state-of-the-art reviews on theoretical and practical aspects of the structure and behaviour of materials. The Journal focuses on all characterization techniques, including all forms of microscopy (light, electron, acoustic, etc.,) and analysis (especially microanalysis and surface analytical techniques). Developments in both this wide range of techniques and their application to the quantification of the microstructure of materials are essential facets of the Journal. The Journal provides the Materials Scientist/Engineer with up-to-date information on many types of materials with an underlying theme of explaining the behavior of materials using novel approaches. Materials covered by the journal include: Metals & Alloys Ceramics Nanomaterials Biomedical materials Optical materials Composites Natural Materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信