Optimisation of microfluidic synthesis of silver nanoparticles via data-driven inverse modelling

IF 3.7 3区 工程技术 Q2 ENGINEERING, CHEMICAL
Konstantia Nathanael , Sibo Cheng , Nina M. Kovalchuk , Rossella Arcucci , Mark J.H. Simmons
{"title":"Optimisation of microfluidic synthesis of silver nanoparticles via data-driven inverse modelling","authors":"Konstantia Nathanael ,&nbsp;Sibo Cheng ,&nbsp;Nina M. Kovalchuk ,&nbsp;Rossella Arcucci ,&nbsp;Mark J.H. Simmons","doi":"10.1016/j.cherd.2025.03.014","DOIUrl":null,"url":null,"abstract":"<div><div>The informed choice of conditions to produce nanoparticles with specific properties for targeted applications is a critical challenge for nanoparticle manufacture. In this study, this problem is addressed taking as an example the synthesis of silver nanoparticles (AgNPs) using an inverse modelling approach, where a polynomial function was constructed using synthesis parameters, including nucleation (<span><math><msub><mrow><mi>k</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>) and growth (<span><math><msub><mrow><mi>k</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>) constants, collection/storage temperature (T), Reynolds number (<span><math><mi>Re</mi></math></span>), and the ratio of Dean number to Reynolds number (<span><math><mrow><mrow><mi>De</mi></mrow><mo>/</mo><mrow><mi>Re</mi></mrow></mrow></math></span>). This function was used to identify the parametric space for hydrodynamic conditions, with other parameters being held constant while employing Latin Hypercube Sampling (LHS) to explore initial guesses in the <span><math><mi>Re</mi></math></span> and <span><math><mrow><mrow><mi>De</mi></mrow><mo>/</mo><mrow><mi>Re</mi></mrow></mrow></math></span> domain. Data assimilation techniques were then applied to incorporate experimental data into the model, facilitating parameter identification and optimization, which resulted in improved predictions and reduced uncertainty. The inverse model was evaluated against unseen data, demonstrating good consistency between forward and inverse modelling paths for AgNP size prediction. Experimental data was used to validate the capability of the model to design AgNPs of a targeted size using specific set of chemicals in a microfluidic system. The integration of LHS and inverse modelling through data assimilation is shown to provide a robust framework for addressing uncertainty in nanoparticle manufacture.</div></div>","PeriodicalId":10019,"journal":{"name":"Chemical Engineering Research & Design","volume":"216 ","pages":"Pages 523-530"},"PeriodicalIF":3.7000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering Research & Design","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0263876225001224","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The informed choice of conditions to produce nanoparticles with specific properties for targeted applications is a critical challenge for nanoparticle manufacture. In this study, this problem is addressed taking as an example the synthesis of silver nanoparticles (AgNPs) using an inverse modelling approach, where a polynomial function was constructed using synthesis parameters, including nucleation (k1) and growth (k2) constants, collection/storage temperature (T), Reynolds number (Re), and the ratio of Dean number to Reynolds number (De/Re). This function was used to identify the parametric space for hydrodynamic conditions, with other parameters being held constant while employing Latin Hypercube Sampling (LHS) to explore initial guesses in the Re and De/Re domain. Data assimilation techniques were then applied to incorporate experimental data into the model, facilitating parameter identification and optimization, which resulted in improved predictions and reduced uncertainty. The inverse model was evaluated against unseen data, demonstrating good consistency between forward and inverse modelling paths for AgNP size prediction. Experimental data was used to validate the capability of the model to design AgNPs of a targeted size using specific set of chemicals in a microfluidic system. The integration of LHS and inverse modelling through data assimilation is shown to provide a robust framework for addressing uncertainty in nanoparticle manufacture.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chemical Engineering Research & Design
Chemical Engineering Research & Design 工程技术-工程:化工
CiteScore
6.10
自引率
7.70%
发文量
623
审稿时长
42 days
期刊介绍: ChERD aims to be the principal international journal for publication of high quality, original papers in chemical engineering. Papers showing how research results can be used in chemical engineering design, and accounts of experimental or theoretical research work bringing new perspectives to established principles, highlighting unsolved problems or indicating directions for future research, are particularly welcome. Contributions that deal with new developments in plant or processes and that can be given quantitative expression are encouraged. The journal is especially interested in papers that extend the boundaries of traditional chemical engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信