{"title":"The effects of armed conflict on natural resources and conservation measures in Tigray, Northern Ethiopia","authors":"Hailemariam Meaza , Tesfaalem Ghebreyohannes , Zbelo Tesfamariam , Girmay Gebresamuel , Biadgilgn Demissie , Dawit Gebregziabher , Jan Nyssen","doi":"10.1016/j.iswcr.2024.11.004","DOIUrl":null,"url":null,"abstract":"<div><div>A heavy armed conflict erupted in Tigray region of Ethiopia in 2020, and the crisis continued up to 2022. This study investigates the impacts of this crisis on the status of natural resources, and Soil and Water Conservation (SWC) efforts. We collected primary data through field observations, measurements, interviews and group discussions during the wartime. We also reviewed published articles and official archives to complement the primary data, which were often challenging to obtain due to the war. We found that vegetated landscapes were damaged by artillery fire and bombings. The average depth of the surveyed bomb craters along the asphalts was 1.15 <span><math><mrow><mo>±</mo></mrow></math></span> 0.47 m (n = 16), whereas the average surface diameter of the craters and their rim was 2.66<span><math><mrow><mo>±</mo></mrow></math></span> 0.67 m. In addition, the construction of numerous military trenches along croplands and hillsides exposed the soil particles into erosion and water pollution. The conflict also halted SWC efforts on various land uses, which were carried out annually during peacetime. For instance, 20,591 km/year of stone bunds were not constructed per year due to the crisis. Moreover, terraces and stone bunds were demolished to construct temporary ground fortifications. Indirectly, the critical energy crisis further increased pressure on forests. In this context, the poor farmers shift their livelihood strategies from the long-term sustainability to immediate economic recovery during the critical time. To conclude, the pathways of the warfare undermined the status of natural resources, and the ongoing decades of re-greening programs. Therefore, our ground-based findings can be used to prioritize and rehabilitate the war-damaged landscape services.</div></div>","PeriodicalId":48622,"journal":{"name":"International Soil and Water Conservation Research","volume":"13 2","pages":"Pages 463-474"},"PeriodicalIF":7.3000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Soil and Water Conservation Research","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095633924000789","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
A heavy armed conflict erupted in Tigray region of Ethiopia in 2020, and the crisis continued up to 2022. This study investigates the impacts of this crisis on the status of natural resources, and Soil and Water Conservation (SWC) efforts. We collected primary data through field observations, measurements, interviews and group discussions during the wartime. We also reviewed published articles and official archives to complement the primary data, which were often challenging to obtain due to the war. We found that vegetated landscapes were damaged by artillery fire and bombings. The average depth of the surveyed bomb craters along the asphalts was 1.15 0.47 m (n = 16), whereas the average surface diameter of the craters and their rim was 2.66 0.67 m. In addition, the construction of numerous military trenches along croplands and hillsides exposed the soil particles into erosion and water pollution. The conflict also halted SWC efforts on various land uses, which were carried out annually during peacetime. For instance, 20,591 km/year of stone bunds were not constructed per year due to the crisis. Moreover, terraces and stone bunds were demolished to construct temporary ground fortifications. Indirectly, the critical energy crisis further increased pressure on forests. In this context, the poor farmers shift their livelihood strategies from the long-term sustainability to immediate economic recovery during the critical time. To conclude, the pathways of the warfare undermined the status of natural resources, and the ongoing decades of re-greening programs. Therefore, our ground-based findings can be used to prioritize and rehabilitate the war-damaged landscape services.
期刊介绍:
The International Soil and Water Conservation Research (ISWCR), the official journal of World Association of Soil and Water Conservation (WASWAC) http://www.waswac.org, is a multidisciplinary journal of soil and water conservation research, practice, policy, and perspectives. It aims to disseminate new knowledge and promote the practice of soil and water conservation.
The scope of International Soil and Water Conservation Research includes research, strategies, and technologies for prediction, prevention, and protection of soil and water resources. It deals with identification, characterization, and modeling; dynamic monitoring and evaluation; assessment and management of conservation practice and creation and implementation of quality standards.
Examples of appropriate topical areas include (but are not limited to):
• Conservation models, tools, and technologies
• Conservation agricultural
• Soil health resources, indicators, assessment, and management
• Land degradation
• Sustainable development
• Soil erosion and its control
• Soil erosion processes
• Water resources assessment and management
• Watershed management
• Soil erosion models
• Literature review on topics related soil and water conservation research