Theoretical understanding of the ABC persistent structure in strongly H-bonded systems: Computational analysis of phosphonic and bis-(heptafluoropropyl) phosphonic acid dimers in gas phase

IF 4.3 2区 化学 Q1 SPECTROSCOPY
Najeh Rekik
{"title":"Theoretical understanding of the ABC persistent structure in strongly H-bonded systems: Computational analysis of phosphonic and bis-(heptafluoropropyl) phosphonic acid dimers in gas phase","authors":"Najeh Rekik","doi":"10.1016/j.saa.2025.126007","DOIUrl":null,"url":null,"abstract":"<div><div>Hydrogen bonds (HBs) that involve direct interaction with fluorine have been the subject of considerable research; however, the indirect influence of fluorine on the dynamics of the strongly hydrogen bonded systems as well as on neighboring donor and acceptor molecules remains inadequately understood and challenging to anticipate. In this paper, we present a theoretical analysis of the infrared absorption spectra of two different phosphinic acids in the gaseous state, R<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>POOH, namely the phosphinic acid (where R = H<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> ) and the bis-(heptafluoropropyl) phosphonic acid (where R = C<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>F<span><math><msub><mrow></mrow><mrow><mn>7</mn></mrow></msub></math></span>). within the spectral range 750–3500 cm<span><math><msup><mrow></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></math></span> at a temperature domain of 345–500 K (Aslin et al., 2002). The equilibrium between the dimers and monomers, giving rise to the stability of the recorded spectra, is experimentally obtained at T =500 K. The resulting band has the characteristic of an ABC structure (Hadzi structure), which is typical to the spectra of structures characterized by exceptionally strong hydrogen bonds in solution and in crystal phase. The experimental spectra is contrasted with the one computationally determined using a theoretical model that congregates, Fermi resonances, Davydov coupling, the theory of strong anharmonic coupling and the effect of the reversible action of the medium on the anharmonic vibrational modes altogether with the same approach dealing with Kubo’s linear response theory. A satisfactory superimposition between the numerically generated spectra and the experimental infrared absorption spectra is elucidated. The theoretical analysis is performed through the examination of the effect of the commonly employed theories and approximations in order to illuminate how to numerically simulate the ABC structure. The method offers a clear explanation for the Hadzi structure’s formation by demonstrating that the BC diad is produced by the Fermi resonance mechanism, while the peak A is caused by the Davydov coupling mechanism. The clarification of the dynamics and the function of fluorine in hydrogen bonding could signify a notable progress in creating a comprehensive simulation tool designed to forecast the infrared absorption bands of compounds exhibiting strong and very strong hydrogen bonds, along with their interactions and affinity with DNA polymerase. This tool might make it possible to conduct methodical research on the intricate relationship between fluorine’s direct and indirect effects on the properties of physiologically active compounds and how they interact with drug-like targets.</div></div>","PeriodicalId":433,"journal":{"name":"Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy","volume":"337 ","pages":"Article 126007"},"PeriodicalIF":4.3000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1386142525003130","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SPECTROSCOPY","Score":null,"Total":0}
引用次数: 0

Abstract

Hydrogen bonds (HBs) that involve direct interaction with fluorine have been the subject of considerable research; however, the indirect influence of fluorine on the dynamics of the strongly hydrogen bonded systems as well as on neighboring donor and acceptor molecules remains inadequately understood and challenging to anticipate. In this paper, we present a theoretical analysis of the infrared absorption spectra of two different phosphinic acids in the gaseous state, R2POOH, namely the phosphinic acid (where R = H2 ) and the bis-(heptafluoropropyl) phosphonic acid (where R = C3F7). within the spectral range 750–3500 cm1 at a temperature domain of 345–500 K (Aslin et al., 2002). The equilibrium between the dimers and monomers, giving rise to the stability of the recorded spectra, is experimentally obtained at T =500 K. The resulting band has the characteristic of an ABC structure (Hadzi structure), which is typical to the spectra of structures characterized by exceptionally strong hydrogen bonds in solution and in crystal phase. The experimental spectra is contrasted with the one computationally determined using a theoretical model that congregates, Fermi resonances, Davydov coupling, the theory of strong anharmonic coupling and the effect of the reversible action of the medium on the anharmonic vibrational modes altogether with the same approach dealing with Kubo’s linear response theory. A satisfactory superimposition between the numerically generated spectra and the experimental infrared absorption spectra is elucidated. The theoretical analysis is performed through the examination of the effect of the commonly employed theories and approximations in order to illuminate how to numerically simulate the ABC structure. The method offers a clear explanation for the Hadzi structure’s formation by demonstrating that the BC diad is produced by the Fermi resonance mechanism, while the peak A is caused by the Davydov coupling mechanism. The clarification of the dynamics and the function of fluorine in hydrogen bonding could signify a notable progress in creating a comprehensive simulation tool designed to forecast the infrared absorption bands of compounds exhibiting strong and very strong hydrogen bonds, along with their interactions and affinity with DNA polymerase. This tool might make it possible to conduct methodical research on the intricate relationship between fluorine’s direct and indirect effects on the properties of physiologically active compounds and how they interact with drug-like targets.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.40
自引率
11.40%
发文量
1364
审稿时长
40 days
期刊介绍: Spectrochimica Acta, Part A: Molecular and Biomolecular Spectroscopy (SAA) is an interdisciplinary journal which spans from basic to applied aspects of optical spectroscopy in chemistry, medicine, biology, and materials science. The journal publishes original scientific papers that feature high-quality spectroscopic data and analysis. From the broad range of optical spectroscopies, the emphasis is on electronic, vibrational or rotational spectra of molecules, rather than on spectroscopy based on magnetic moments. Criteria for publication in SAA are novelty, uniqueness, and outstanding quality. Routine applications of spectroscopic techniques and computational methods are not appropriate. Topics of particular interest of Spectrochimica Acta Part A include, but are not limited to: Spectroscopy and dynamics of bioanalytical, biomedical, environmental, and atmospheric sciences, Novel experimental techniques or instrumentation for molecular spectroscopy, Novel theoretical and computational methods, Novel applications in photochemistry and photobiology, Novel interpretational approaches as well as advances in data analysis based on electronic or vibrational spectroscopy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信