Microstructure evolution and hydrogen embrittlement mechanism of a 2200 MPa press-hardened steel with tempering treatment

IF 4.8 2区 材料科学 Q1 MATERIALS SCIENCE, CHARACTERIZATION & TESTING
Wei Jian Chen , Zi Yao Wei , Shun Hu Zhang , Ming Kun Ge , Xin Dai , Shun Wu
{"title":"Microstructure evolution and hydrogen embrittlement mechanism of a 2200 MPa press-hardened steel with tempering treatment","authors":"Wei Jian Chen ,&nbsp;Zi Yao Wei ,&nbsp;Shun Hu Zhang ,&nbsp;Ming Kun Ge ,&nbsp;Xin Dai ,&nbsp;Shun Wu","doi":"10.1016/j.matchar.2025.114955","DOIUrl":null,"url":null,"abstract":"<div><div>This study elucidates the coupled enhancement of yield strength and hydrogen embrittlement (HE) resistance in a 2200 MPa press-hardened steel (PHS) through tempering treatments. The results indicate that as the tempering temperature rises, the dislocation density decreases, and the type of precipitated particles changes from needle-like ε-carbides to rod-like η-carbides. Quantitative strengthening mechanism analysis demonstrates that although dislocation strengthening diminishes by 176 MPa after 300 °C tempering, the overall yield strength increases by 186 MPa (reaching 1624 MPa) due to enhanced precipitation strengthening through the interaction between the ε/η-carbides and dislocations. Furthermore, the HE sensitivity of ultra-high strength PHS is governed by the diffusible hydrogen trapped in the dislocations and grain boundaries. Notably, the precipitated particles (semi-coherent (V, Nb)C and ε/η-carbides) effectively suppress both hydrogen-enhanced decohesion (HEDE) and hydrogen-enhanced localized plasticity (HELP) mechanisms by hindering the movement of dislocation‑hydrogen atmospheres. This synergistic effect achieves remarkable HE resistance (fracture strength loss of 1.3 % and displacement loss of 13.2 %) while maintaining ultrahigh strength.</div></div>","PeriodicalId":18727,"journal":{"name":"Materials Characterization","volume":"223 ","pages":"Article 114955"},"PeriodicalIF":4.8000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Characterization","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S104458032500244X","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0

Abstract

This study elucidates the coupled enhancement of yield strength and hydrogen embrittlement (HE) resistance in a 2200 MPa press-hardened steel (PHS) through tempering treatments. The results indicate that as the tempering temperature rises, the dislocation density decreases, and the type of precipitated particles changes from needle-like ε-carbides to rod-like η-carbides. Quantitative strengthening mechanism analysis demonstrates that although dislocation strengthening diminishes by 176 MPa after 300 °C tempering, the overall yield strength increases by 186 MPa (reaching 1624 MPa) due to enhanced precipitation strengthening through the interaction between the ε/η-carbides and dislocations. Furthermore, the HE sensitivity of ultra-high strength PHS is governed by the diffusible hydrogen trapped in the dislocations and grain boundaries. Notably, the precipitated particles (semi-coherent (V, Nb)C and ε/η-carbides) effectively suppress both hydrogen-enhanced decohesion (HEDE) and hydrogen-enhanced localized plasticity (HELP) mechanisms by hindering the movement of dislocation‑hydrogen atmospheres. This synergistic effect achieves remarkable HE resistance (fracture strength loss of 1.3 % and displacement loss of 13.2 %) while maintaining ultrahigh strength.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials Characterization
Materials Characterization 工程技术-材料科学:表征与测试
CiteScore
7.60
自引率
8.50%
发文量
746
审稿时长
36 days
期刊介绍: Materials Characterization features original articles and state-of-the-art reviews on theoretical and practical aspects of the structure and behaviour of materials. The Journal focuses on all characterization techniques, including all forms of microscopy (light, electron, acoustic, etc.,) and analysis (especially microanalysis and surface analytical techniques). Developments in both this wide range of techniques and their application to the quantification of the microstructure of materials are essential facets of the Journal. The Journal provides the Materials Scientist/Engineer with up-to-date information on many types of materials with an underlying theme of explaining the behavior of materials using novel approaches. Materials covered by the journal include: Metals & Alloys Ceramics Nanomaterials Biomedical materials Optical materials Composites Natural Materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信