Contrastive learning with adversarial masking for sequential recommendation

IF 5.9 3区 管理学 Q1 BUSINESS
Rongzheng Xiang , Jiajin Huang , Jian Yang
{"title":"Contrastive learning with adversarial masking for sequential recommendation","authors":"Rongzheng Xiang ,&nbsp;Jiajin Huang ,&nbsp;Jian Yang","doi":"10.1016/j.elerap.2025.101493","DOIUrl":null,"url":null,"abstract":"<div><div>Sequential recommendation is of paramount importance for predicting user preferences based on their historical interactions. Recent studies have leveraged contrastive learning as an auxiliary task to enhance sequence representations, with the goal of improving recommendation accuracy. However, an important challenge arises: random item masking, a key component of contrastive learning, while promoting robust representations through intricate semantic inference, may inadvertently distort the original sequence semantics to some extent. In contrast, methods that prioritize the preservation of sequence semantics tend to neglect the essential masking mechanism for robust representation learning. To address this issue, we propose a model called <strong>C</strong>ontrastive <strong>L</strong>earning with <strong>A</strong>dversarial <strong>M</strong>asking (CLAM) for sequential recommendation. CLAM consists of three core components: an inference module, an occlusion module, and a multi-task learning paradigm. During training, the occlusion module is optimized to perturb the inference module in both recommendation generation and contrastive learning tasks by adaptively generating item embedding masks. This adversarial training framework enables CLAM to balance sequential pattern preservation with the acquisition of robust representations in the inference module for recommendation tasks. Our extensive experiments on four benchmark datasets demonstrate the effectiveness of CLAM. It achieves significant improvements in sequential recommendation accuracy and robustness against noisy interactions.</div></div>","PeriodicalId":50541,"journal":{"name":"Electronic Commerce Research and Applications","volume":"71 ","pages":"Article 101493"},"PeriodicalIF":5.9000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Commerce Research and Applications","FirstCategoryId":"91","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1567422325000183","RegionNum":3,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BUSINESS","Score":null,"Total":0}
引用次数: 0

Abstract

Sequential recommendation is of paramount importance for predicting user preferences based on their historical interactions. Recent studies have leveraged contrastive learning as an auxiliary task to enhance sequence representations, with the goal of improving recommendation accuracy. However, an important challenge arises: random item masking, a key component of contrastive learning, while promoting robust representations through intricate semantic inference, may inadvertently distort the original sequence semantics to some extent. In contrast, methods that prioritize the preservation of sequence semantics tend to neglect the essential masking mechanism for robust representation learning. To address this issue, we propose a model called Contrastive Learning with Adversarial Masking (CLAM) for sequential recommendation. CLAM consists of three core components: an inference module, an occlusion module, and a multi-task learning paradigm. During training, the occlusion module is optimized to perturb the inference module in both recommendation generation and contrastive learning tasks by adaptively generating item embedding masks. This adversarial training framework enables CLAM to balance sequential pattern preservation with the acquisition of robust representations in the inference module for recommendation tasks. Our extensive experiments on four benchmark datasets demonstrate the effectiveness of CLAM. It achieves significant improvements in sequential recommendation accuracy and robustness against noisy interactions.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Electronic Commerce Research and Applications
Electronic Commerce Research and Applications 工程技术-计算机:跨学科应用
CiteScore
10.10
自引率
8.30%
发文量
97
审稿时长
63 days
期刊介绍: Electronic Commerce Research and Applications aims to create and disseminate enduring knowledge for the fast-changing e-commerce environment. A major dilemma in e-commerce research is how to achieve a balance between the currency and the life span of knowledge. Electronic Commerce Research and Applications will contribute to the establishment of a research community to create the knowledge, technology, theory, and applications for the development of electronic commerce. This is targeted at the intersection of technological potential and business aims.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信