Ali Zia , Muhammad Husnain , Sally Buck , Jonathan Richetti , Elizabeth Hulm , Jean-Philippe Ral , Vivien Rolland , Xavier Sirault
{"title":"Unlocking chickpea flour potential: AI-powered prediction for quality assessment and compositional characterisation","authors":"Ali Zia , Muhammad Husnain , Sally Buck , Jonathan Richetti , Elizabeth Hulm , Jean-Philippe Ral , Vivien Rolland , Xavier Sirault","doi":"10.1016/j.crfs.2025.101030","DOIUrl":null,"url":null,"abstract":"<div><div>The growing demand for sustainable, nutritious, and environmentally friendly food sources has placed chickpea flour as a vital component in the global shift to plant-based diets. However, the inherent variability in the composition of chickpea flour, influenced by genetic diversity, environmental conditions, and processing techniques, poses significant challenges to standardisation and quality control. This study explores the integration of deep learning models with near-infrared (NIR) spectroscopy to improve the accuracy and efficiency of chickpea flour quality assessment. Using a dataset comprising 136 chickpea varieties, the research compares the performance of several state-of-the-art deep learning models, including Convolutional Neural Networks (CNNs), Vision Transformers (ViTs), and Graph Convolutional Networks (GCNs), and compares the most effective model, CNN, against the traditional Partial Least Squares Regression (PLSR) method. The results demonstrate that CNN-based models outperform PLSR, providing more accurate predictions for key quality attributes such as protein content, starch, soluble sugars, insoluble fibres, total lipids, and moisture levels. The study highlights the potential of AI-enhanced NIR spectroscopy to revolutionise quality assessment in the food industry by offering a non-destructive, rapid, and reliable method for analysing chickpea flour. Despite the challenges posed by the limited dataset, deep learning models exhibit capabilities that suggest that further advancements would allow their industrial applicability. This research paves the way for broader applications of AI-driven quality control in food production, contributing to the development of more consistent and high-quality plant-based food products.</div></div>","PeriodicalId":10939,"journal":{"name":"Current Research in Food Science","volume":"10 ","pages":"Article 101030"},"PeriodicalIF":6.2000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Research in Food Science","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2665927125000619","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The growing demand for sustainable, nutritious, and environmentally friendly food sources has placed chickpea flour as a vital component in the global shift to plant-based diets. However, the inherent variability in the composition of chickpea flour, influenced by genetic diversity, environmental conditions, and processing techniques, poses significant challenges to standardisation and quality control. This study explores the integration of deep learning models with near-infrared (NIR) spectroscopy to improve the accuracy and efficiency of chickpea flour quality assessment. Using a dataset comprising 136 chickpea varieties, the research compares the performance of several state-of-the-art deep learning models, including Convolutional Neural Networks (CNNs), Vision Transformers (ViTs), and Graph Convolutional Networks (GCNs), and compares the most effective model, CNN, against the traditional Partial Least Squares Regression (PLSR) method. The results demonstrate that CNN-based models outperform PLSR, providing more accurate predictions for key quality attributes such as protein content, starch, soluble sugars, insoluble fibres, total lipids, and moisture levels. The study highlights the potential of AI-enhanced NIR spectroscopy to revolutionise quality assessment in the food industry by offering a non-destructive, rapid, and reliable method for analysing chickpea flour. Despite the challenges posed by the limited dataset, deep learning models exhibit capabilities that suggest that further advancements would allow their industrial applicability. This research paves the way for broader applications of AI-driven quality control in food production, contributing to the development of more consistent and high-quality plant-based food products.
期刊介绍:
Current Research in Food Science is an international peer-reviewed journal dedicated to advancing the breadth of knowledge in the field of food science. It serves as a platform for publishing original research articles and short communications that encompass a wide array of topics, including food chemistry, physics, microbiology, nutrition, nutraceuticals, process and package engineering, materials science, food sustainability, and food security. By covering these diverse areas, the journal aims to provide a comprehensive source of the latest scientific findings and technological advancements that are shaping the future of the food industry. The journal's scope is designed to address the multidisciplinary nature of food science, reflecting its commitment to promoting innovation and ensuring the safety and quality of the food supply.