Jian Zhou , Yulong Gao , Björn Olofsson , Erik Frisk
{"title":"Robust motion planning for autonomous vehicles based on environment and uncertainty-aware reachability prediction","authors":"Jian Zhou , Yulong Gao , Björn Olofsson , Erik Frisk","doi":"10.1016/j.conengprac.2025.106319","DOIUrl":null,"url":null,"abstract":"<div><div>Planning and navigation in real-time traffic is challenging, since the driving environment (e.g., road network and infrastructure) is complex and the accurate prediction of surrounding vehicles is hard. To address this, this paper proposes an environment and uncertainty-aware robust motion-planning strategy. The method achieves environment awareness by considering road-geometry constraints in the reachability prediction of surrounding vehicles, and uncertainty awareness by online learning the intended control set of the surrounding vehicles. By integrating this dual awareness, the method effectively predicts the forward reachability of surrounding vehicles, which is applied in the design of collision-avoidance constraints in the optimal motion-planning strategy. The motion planner then computes the reference trajectory for the autonomous ego vehicle using a receding-horizon approach to fit variations in the dynamic traffic. The effectiveness of the strategy is demonstrated through simulations in roundabout scenarios by comparing with alternative methods, further validated in a traffic scenario from a dataset recorded in the real world. Additionally, the feasibility of real-time implementation is verified through hardware experiments using car-like mobile robots.</div></div>","PeriodicalId":50615,"journal":{"name":"Control Engineering Practice","volume":"160 ","pages":"Article 106319"},"PeriodicalIF":5.4000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Control Engineering Practice","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0967066125000826","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Planning and navigation in real-time traffic is challenging, since the driving environment (e.g., road network and infrastructure) is complex and the accurate prediction of surrounding vehicles is hard. To address this, this paper proposes an environment and uncertainty-aware robust motion-planning strategy. The method achieves environment awareness by considering road-geometry constraints in the reachability prediction of surrounding vehicles, and uncertainty awareness by online learning the intended control set of the surrounding vehicles. By integrating this dual awareness, the method effectively predicts the forward reachability of surrounding vehicles, which is applied in the design of collision-avoidance constraints in the optimal motion-planning strategy. The motion planner then computes the reference trajectory for the autonomous ego vehicle using a receding-horizon approach to fit variations in the dynamic traffic. The effectiveness of the strategy is demonstrated through simulations in roundabout scenarios by comparing with alternative methods, further validated in a traffic scenario from a dataset recorded in the real world. Additionally, the feasibility of real-time implementation is verified through hardware experiments using car-like mobile robots.
期刊介绍:
Control Engineering Practice strives to meet the needs of industrial practitioners and industrially related academics and researchers. It publishes papers which illustrate the direct application of control theory and its supporting tools in all possible areas of automation. As a result, the journal only contains papers which can be considered to have made significant contributions to the application of advanced control techniques. It is normally expected that practical results should be included, but where simulation only studies are available, it is necessary to demonstrate that the simulation model is representative of a genuine application. Strictly theoretical papers will find a more appropriate home in Control Engineering Practice''s sister publication, Automatica. It is also expected that papers are innovative with respect to the state of the art and are sufficiently detailed for a reader to be able to duplicate the main results of the paper (supplementary material, including datasets, tables, code and any relevant interactive material can be made available and downloaded from the website). The benefits of the presented methods must be made very clear and the new techniques must be compared and contrasted with results obtained using existing methods. Moreover, a thorough analysis of failures that may happen in the design process and implementation can also be part of the paper.
The scope of Control Engineering Practice matches the activities of IFAC.
Papers demonstrating the contribution of automation and control in improving the performance, quality, productivity, sustainability, resource and energy efficiency, and the manageability of systems and processes for the benefit of mankind and are relevant to industrial practitioners are most welcome.