High-performance polyacrylate oligomers enabled by disulfide networks

Keyu Lian, Shengdu Yang, Wei Tang, Ziyu Cui, Junhua Zhang
{"title":"High-performance polyacrylate oligomers enabled by disulfide networks","authors":"Keyu Lian,&nbsp;Shengdu Yang,&nbsp;Wei Tang,&nbsp;Ziyu Cui,&nbsp;Junhua Zhang","doi":"10.1016/j.nxmate.2025.100617","DOIUrl":null,"url":null,"abstract":"<div><div>Unsaturated acrylate oligomers exhibit low viscosity and appropriate flowability, making them ideal candidates in the coatings industry. The effective development and optimization of polyacrylate resins continue to be a major focus in the field of high-performance material design. However, the selectivity of the monomer reaction poses a challenge to fundamentally change the molecular structure of the polymer, and the filler reinforcement method exists the problem of long-term performance instability. In this paper, we designed and constructed a new class of crosslinking agents, which were synthesized by esterification between thioctic acid (TA) with inherent photosensitive S-S motifs and several small molecular glycidyl ethers, including 1,4-butanediol diglycidyl ether (1,4-BDE), 1,6-hexanediol diglycidyl ether (1,6-HDE), 1,3-benzenediol diglycidyl ether (1,3-BDE), and bisphenol A diglycidyl ether (BADE). By incorporating a specific proportion of the crosslinking agent into the polyacrylate oligomer, the performances of the cured film were obviously improved. Furthermore, bisphenol A glycidyl ether-modified disulfide system (BAT) with variable participation ratios was established to enhance thermal and mechanical properties. The optimized BAT coating demonstrated robust tensile strength (36.64 MPa), toughness (1.34 MJ m<sup>−3</sup>), and ideal T<sub>g</sub> (126.7 °C), as well as attractive hydrophobicity (97.6 °) and self-healing ability. As a proof of concept, the BAT<sub>3</sub> oligomer was used as the main resin for high-load filler coating, which possessed suitable viscosity (212 Pa·s) and mechanical strength, with resistance to aging and low-temperature cracking. Overall, this work provides an opportunity to develop high-performance polyacrylate materials based on dynamic cross-linking bonds and can be applied well in high-load filler coatings.</div></div>","PeriodicalId":100958,"journal":{"name":"Next Materials","volume":"8 ","pages":"Article 100617"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Next Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949822825001352","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Unsaturated acrylate oligomers exhibit low viscosity and appropriate flowability, making them ideal candidates in the coatings industry. The effective development and optimization of polyacrylate resins continue to be a major focus in the field of high-performance material design. However, the selectivity of the monomer reaction poses a challenge to fundamentally change the molecular structure of the polymer, and the filler reinforcement method exists the problem of long-term performance instability. In this paper, we designed and constructed a new class of crosslinking agents, which were synthesized by esterification between thioctic acid (TA) with inherent photosensitive S-S motifs and several small molecular glycidyl ethers, including 1,4-butanediol diglycidyl ether (1,4-BDE), 1,6-hexanediol diglycidyl ether (1,6-HDE), 1,3-benzenediol diglycidyl ether (1,3-BDE), and bisphenol A diglycidyl ether (BADE). By incorporating a specific proportion of the crosslinking agent into the polyacrylate oligomer, the performances of the cured film were obviously improved. Furthermore, bisphenol A glycidyl ether-modified disulfide system (BAT) with variable participation ratios was established to enhance thermal and mechanical properties. The optimized BAT coating demonstrated robust tensile strength (36.64 MPa), toughness (1.34 MJ m−3), and ideal Tg (126.7 °C), as well as attractive hydrophobicity (97.6 °) and self-healing ability. As a proof of concept, the BAT3 oligomer was used as the main resin for high-load filler coating, which possessed suitable viscosity (212 Pa·s) and mechanical strength, with resistance to aging and low-temperature cracking. Overall, this work provides an opportunity to develop high-performance polyacrylate materials based on dynamic cross-linking bonds and can be applied well in high-load filler coatings.
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信