Shuhao Wei , Ye Chen , Yiyang Qiu , Wei Kong , Di Lin , Jiarong Li , Guojun Lan , Yi Jia , Xiucheng Sun , Zaizhe Cheng , Jian Liu , P. Hu , Ying Li
{"title":"The curvature structure unlocks an ultra-efficient metal-free carbon catalyst surpassing gold for acetylene hydrochlorination","authors":"Shuhao Wei , Ye Chen , Yiyang Qiu , Wei Kong , Di Lin , Jiarong Li , Guojun Lan , Yi Jia , Xiucheng Sun , Zaizhe Cheng , Jian Liu , P. Hu , Ying Li","doi":"10.1016/S1872-2067(24)60250-0","DOIUrl":null,"url":null,"abstract":"<div><div>Metal-free carbon catalysts have garnered significant attention since their inception. Despite substantial advancements, including widely adopted strategies such as heteroatom doping and defect engineering, their catalytic performance remains inferior to that of metal-based catalysts. In this study, we have predicted and demonstrated that the curvature of carbon plays a pivotal role in the adsorption of acetylene and the overall catalytic performance. First-principles calculations suggest that a tip-enhanced local electric field at the defect site on the curved carbon catalyst enhances the reaction kinetics for acetylene hydrochlorination. The experimental results highlight the structural advantages of the curved defect site, revealing that high-curvature defective carbon (HCDC) demonstrates an adsorption capacity for acetylene that is almost two orders of magnitude higher than that of defective carbon. Notably, HCDC achieves an acetylene conversion of up to 90% at 220 °C under a gas hourly space velocity of 300 h<sup>–1</sup>, significantly surpassing the performance of the benchmark 0.25% Au/AC catalyst. This proof-of-concept study reveals the fundamental mechanisms driving the superior performance of carbon catalysts with curved nanostructures and presents a straightforward, environmentally friendly method for large-scale production of carbon materials with precisely controlled nanostructures. It highlights the potential for commercializing metal-free carbon catalysts in acetylene hydrochlorination and related heterogenous catalytic reactions.</div></div>","PeriodicalId":9832,"journal":{"name":"Chinese Journal of Catalysis","volume":"70 ","pages":"Pages 260-271"},"PeriodicalIF":15.7000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Catalysis","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1872206724602500","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Metal-free carbon catalysts have garnered significant attention since their inception. Despite substantial advancements, including widely adopted strategies such as heteroatom doping and defect engineering, their catalytic performance remains inferior to that of metal-based catalysts. In this study, we have predicted and demonstrated that the curvature of carbon plays a pivotal role in the adsorption of acetylene and the overall catalytic performance. First-principles calculations suggest that a tip-enhanced local electric field at the defect site on the curved carbon catalyst enhances the reaction kinetics for acetylene hydrochlorination. The experimental results highlight the structural advantages of the curved defect site, revealing that high-curvature defective carbon (HCDC) demonstrates an adsorption capacity for acetylene that is almost two orders of magnitude higher than that of defective carbon. Notably, HCDC achieves an acetylene conversion of up to 90% at 220 °C under a gas hourly space velocity of 300 h–1, significantly surpassing the performance of the benchmark 0.25% Au/AC catalyst. This proof-of-concept study reveals the fundamental mechanisms driving the superior performance of carbon catalysts with curved nanostructures and presents a straightforward, environmentally friendly method for large-scale production of carbon materials with precisely controlled nanostructures. It highlights the potential for commercializing metal-free carbon catalysts in acetylene hydrochlorination and related heterogenous catalytic reactions.
期刊介绍:
The journal covers a broad scope, encompassing new trends in catalysis for applications in energy production, environmental protection, and the preparation of materials, petroleum chemicals, and fine chemicals. It explores the scientific foundation for preparing and activating catalysts of commercial interest, emphasizing representative models.The focus includes spectroscopic methods for structural characterization, especially in situ techniques, as well as new theoretical methods with practical impact in catalysis and catalytic reactions.The journal delves into the relationship between homogeneous and heterogeneous catalysis and includes theoretical studies on the structure and reactivity of catalysts.Additionally, contributions on photocatalysis, biocatalysis, surface science, and catalysis-related chemical kinetics are welcomed.