Recent advances of covalent organic frameworks-based photocatalysts: Principles, designs, and applications

IF 15.7 1区 化学 Q1 CHEMISTRY, APPLIED
Hongjun Dong , Chunhong Qu , Chunmei Li , Bo Hu , Xin Li , Guijie Liang , Jizhou Jiang
{"title":"Recent advances of covalent organic frameworks-based photocatalysts: Principles, designs, and applications","authors":"Hongjun Dong ,&nbsp;Chunhong Qu ,&nbsp;Chunmei Li ,&nbsp;Bo Hu ,&nbsp;Xin Li ,&nbsp;Guijie Liang ,&nbsp;Jizhou Jiang","doi":"10.1016/S1872-2067(24)60184-1","DOIUrl":null,"url":null,"abstract":"<div><div>Covalent organic frameworks (COFs) semiconductor materials have garnered significant attention in solar to chemical energy conversion owing to their unique properties, including structural tunability, pre-design capability, large surface area, abundant pore structures, high crystallinity, excellent chemical stability, suitable energy-band structure, fast charge carrier transfer and so on. These intrinsic features endow COFs with the remarkable candidates for various photocatalytic applications including photocatalytic H<sub>2</sub> generation from water reduction, CO<sub>2</sub> reduction, degradation of organic pollutants, N<sub>2</sub> fixation, H<sub>2</sub>O<sub>2</sub> evolution, and even organic synthesis. Here, this review comprehensively summarizes the recent advancements in COF-based materials for the above photocatalytic reactions, including the historic overview of the COF in the photocatalysis field, the fundamentals and design philosophy of COF-based photocatalysts, the advances of synthesis strategies, the structural characteristics and diversities, the practical applications in various photocatalytic fields as well as the challenges and future development direction in terms of COFs material and application perspectives. We sincerely hope this review can offer symbolic guidelines for future development COF semiconductor materials in this promising field.</div></div>","PeriodicalId":9832,"journal":{"name":"Chinese Journal of Catalysis","volume":"70 ","pages":"Pages 142-206"},"PeriodicalIF":15.7000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Catalysis","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1872206724601841","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Covalent organic frameworks (COFs) semiconductor materials have garnered significant attention in solar to chemical energy conversion owing to their unique properties, including structural tunability, pre-design capability, large surface area, abundant pore structures, high crystallinity, excellent chemical stability, suitable energy-band structure, fast charge carrier transfer and so on. These intrinsic features endow COFs with the remarkable candidates for various photocatalytic applications including photocatalytic H2 generation from water reduction, CO2 reduction, degradation of organic pollutants, N2 fixation, H2O2 evolution, and even organic synthesis. Here, this review comprehensively summarizes the recent advancements in COF-based materials for the above photocatalytic reactions, including the historic overview of the COF in the photocatalysis field, the fundamentals and design philosophy of COF-based photocatalysts, the advances of synthesis strategies, the structural characteristics and diversities, the practical applications in various photocatalytic fields as well as the challenges and future development direction in terms of COFs material and application perspectives. We sincerely hope this review can offer symbolic guidelines for future development COF semiconductor materials in this promising field.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chinese Journal of Catalysis
Chinese Journal of Catalysis 工程技术-工程:化工
CiteScore
25.80
自引率
10.30%
发文量
235
审稿时长
1.2 months
期刊介绍: The journal covers a broad scope, encompassing new trends in catalysis for applications in energy production, environmental protection, and the preparation of materials, petroleum chemicals, and fine chemicals. It explores the scientific foundation for preparing and activating catalysts of commercial interest, emphasizing representative models.The focus includes spectroscopic methods for structural characterization, especially in situ techniques, as well as new theoretical methods with practical impact in catalysis and catalytic reactions.The journal delves into the relationship between homogeneous and heterogeneous catalysis and includes theoretical studies on the structure and reactivity of catalysts.Additionally, contributions on photocatalysis, biocatalysis, surface science, and catalysis-related chemical kinetics are welcomed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信