Photocatalytic water splitting versus H2 generation coupled with organic synthesis: A large critical review

IF 15.7 1区 化学 Q1 CHEMISTRY, APPLIED
Oleksandr Savateev , Jingru Zhuang , Sijie Wan , Chunshan Song , Shaowen Cao , Junwang Tang
{"title":"Photocatalytic water splitting versus H2 generation coupled with organic synthesis: A large critical review","authors":"Oleksandr Savateev ,&nbsp;Jingru Zhuang ,&nbsp;Sijie Wan ,&nbsp;Chunshan Song ,&nbsp;Shaowen Cao ,&nbsp;Junwang Tang","doi":"10.1016/S1872-2067(24)60216-0","DOIUrl":null,"url":null,"abstract":"<div><div>Photocatalytic water splitting using natural solar light is considered as a sustainable approach to generate H<sub>2</sub> and O<sub>2</sub>. While H<sub>2</sub> has high market value, the by-product of water splitting, oxygen, is less valuable. To make H<sub>2</sub> produced by means of photocatalysis more economically competitive to that generated from methane, its generation is studied together with synthesis of organic compounds that have higher market value. This review summarizes and analyzes critically dehydrogenation reactions that were developed since 1980s. Photocatalytic dehydrogenation reactions are classified and the results are collected in the online database. Performance of homogeneous and heterogenous photocatalysts in dehydrogenation reactions, such as yield rates of organic products on analytical and preparative scales, and quantum efficiencies are compared. Current limitations of the existing methods and photocatalytic systems are identified and directions for the future developments are outlined.</div></div>","PeriodicalId":9832,"journal":{"name":"Chinese Journal of Catalysis","volume":"70 ","pages":"Pages 44-114"},"PeriodicalIF":15.7000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Catalysis","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1872206724602160","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Photocatalytic water splitting using natural solar light is considered as a sustainable approach to generate H2 and O2. While H2 has high market value, the by-product of water splitting, oxygen, is less valuable. To make H2 produced by means of photocatalysis more economically competitive to that generated from methane, its generation is studied together with synthesis of organic compounds that have higher market value. This review summarizes and analyzes critically dehydrogenation reactions that were developed since 1980s. Photocatalytic dehydrogenation reactions are classified and the results are collected in the online database. Performance of homogeneous and heterogenous photocatalysts in dehydrogenation reactions, such as yield rates of organic products on analytical and preparative scales, and quantum efficiencies are compared. Current limitations of the existing methods and photocatalytic systems are identified and directions for the future developments are outlined.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chinese Journal of Catalysis
Chinese Journal of Catalysis 工程技术-工程:化工
CiteScore
25.80
自引率
10.30%
发文量
235
审稿时长
1.2 months
期刊介绍: The journal covers a broad scope, encompassing new trends in catalysis for applications in energy production, environmental protection, and the preparation of materials, petroleum chemicals, and fine chemicals. It explores the scientific foundation for preparing and activating catalysts of commercial interest, emphasizing representative models.The focus includes spectroscopic methods for structural characterization, especially in situ techniques, as well as new theoretical methods with practical impact in catalysis and catalytic reactions.The journal delves into the relationship between homogeneous and heterogeneous catalysis and includes theoretical studies on the structure and reactivity of catalysts.Additionally, contributions on photocatalysis, biocatalysis, surface science, and catalysis-related chemical kinetics are welcomed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信