Printing dense and low-resistance copper microstructures via highly directional laser-induced forward transfer

IF 10.3 1区 工程技术 Q1 ENGINEERING, MANUFACTURING
Jiangyou Long , Yujun Zhou , Jinghao Lin , Bingjun Luo , Zhiheng Wu , Xinhong Su
{"title":"Printing dense and low-resistance copper microstructures via highly directional laser-induced forward transfer","authors":"Jiangyou Long ,&nbsp;Yujun Zhou ,&nbsp;Jinghao Lin ,&nbsp;Bingjun Luo ,&nbsp;Zhiheng Wu ,&nbsp;Xinhong Su","doi":"10.1016/j.addma.2025.104755","DOIUrl":null,"url":null,"abstract":"<div><div>Laser-induced forward transfer (LIFT) can be used to print micrometer-scale metallic three-dimensional (3D) structures. However, the structures produced by this method exhibit high porosity and poor electrical properties due to the non-vertical ejection and loose stacking of transfer particles. In this study, we replace the conventional copper (Cu) monolayer donor film with a chromium-copper (Cr-Cu) bilayer film. We demonstrate that this bilayer enhances laser absorption and improves glass-metal adhesion through the spontaneous formation of a CrO<sub><em>x</em></sub> interlayer. The improved laser absorption reduces the optimal pulse energy required for transfer, while the interlayer stabilizes the transfer process, promoting more vertical ejection of material. This enhanced directionality leads to denser structures, even when the donor and receiver are placed at a larger distance. The resulting structures exhibit a porosity of 4.8 % and a specific resistance 2.9 times that of bulk copper. Cross-sectional electron microscopy is employed to investigate the microstructure and elucidate the mechanisms behind the reduced resistance. Additionally, we demonstrate the application of this 3D printing method in creating high aspect ratio microstructures and repairing open defects on printed circuit boards (PCBs).</div></div>","PeriodicalId":7172,"journal":{"name":"Additive manufacturing","volume":"103 ","pages":"Article 104755"},"PeriodicalIF":10.3000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Additive manufacturing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214860425001198","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

Abstract

Laser-induced forward transfer (LIFT) can be used to print micrometer-scale metallic three-dimensional (3D) structures. However, the structures produced by this method exhibit high porosity and poor electrical properties due to the non-vertical ejection and loose stacking of transfer particles. In this study, we replace the conventional copper (Cu) monolayer donor film with a chromium-copper (Cr-Cu) bilayer film. We demonstrate that this bilayer enhances laser absorption and improves glass-metal adhesion through the spontaneous formation of a CrOx interlayer. The improved laser absorption reduces the optimal pulse energy required for transfer, while the interlayer stabilizes the transfer process, promoting more vertical ejection of material. This enhanced directionality leads to denser structures, even when the donor and receiver are placed at a larger distance. The resulting structures exhibit a porosity of 4.8 % and a specific resistance 2.9 times that of bulk copper. Cross-sectional electron microscopy is employed to investigate the microstructure and elucidate the mechanisms behind the reduced resistance. Additionally, we demonstrate the application of this 3D printing method in creating high aspect ratio microstructures and repairing open defects on printed circuit boards (PCBs).
求助全文
约1分钟内获得全文 求助全文
来源期刊
Additive manufacturing
Additive manufacturing Materials Science-General Materials Science
CiteScore
19.80
自引率
12.70%
发文量
648
审稿时长
35 days
期刊介绍: Additive Manufacturing stands as a peer-reviewed journal dedicated to delivering high-quality research papers and reviews in the field of additive manufacturing, serving both academia and industry leaders. The journal's objective is to recognize the innovative essence of additive manufacturing and its diverse applications, providing a comprehensive overview of current developments and future prospects. The transformative potential of additive manufacturing technologies in product design and manufacturing is poised to disrupt traditional approaches. In response to this paradigm shift, a distinctive and comprehensive publication outlet was essential. Additive Manufacturing fulfills this need, offering a platform for engineers, materials scientists, and practitioners across academia and various industries to document and share innovations in these evolving technologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信