Li Lin , Ting Sun , Mi Fan , Fengrui You , Yuanmiao Huang
{"title":"An adaptive power-voltage hierarchical control based on improved consensus algorithm for DC traction power supply system","authors":"Li Lin , Ting Sun , Mi Fan , Fengrui You , Yuanmiao Huang","doi":"10.1016/j.epsr.2025.111642","DOIUrl":null,"url":null,"abstract":"<div><div>Droop control is a typical method for achieving power-voltage control in DC systems. However, the movement of traction trains causes real-time changes in the resistance of the traction network, leading to variations in power sharing at traction substations (TSSs) determined by droop control, thereby impacting the voltage operation quality of the DC traction power supply system (TPSS). In this paper, an adaptive power-voltage hierarchical control strategy considering rational traction power sharing and voltage compensation based on the consensus algorithm is proposed to mitigate the impact of train movement. Firstly, to enhance the convergence speed of inter-station communication algorithms in the system layer control, an improved consensus algorithm with a convergence factor is proposed to calculate the average values of TSS state variables needed for the local layer control. Secondly, in the local layer control, the per-unit average power of TSSs is introduced to compensate for the impact of train movement on the droop coefficient. Furthermore, to reduce power loss in the traction network, a base quantity for virtual power is proposed for further compensation of the droop coefficient. Through dynamic compensation of the droop coefficient, a rational sharing of traction power according to rated capacity and power supply distance at TSSs is achieved. Moreover, the voltage average is utilized for secondary compensation of voltage deviations at TSSs. Finally, simulations based on a four-terminal DC TPSS have been established to validate the effectiveness of the proposed method in terms of power sharing and voltage control.</div></div>","PeriodicalId":50547,"journal":{"name":"Electric Power Systems Research","volume":"245 ","pages":"Article 111642"},"PeriodicalIF":3.3000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electric Power Systems Research","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378779625002342","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Droop control is a typical method for achieving power-voltage control in DC systems. However, the movement of traction trains causes real-time changes in the resistance of the traction network, leading to variations in power sharing at traction substations (TSSs) determined by droop control, thereby impacting the voltage operation quality of the DC traction power supply system (TPSS). In this paper, an adaptive power-voltage hierarchical control strategy considering rational traction power sharing and voltage compensation based on the consensus algorithm is proposed to mitigate the impact of train movement. Firstly, to enhance the convergence speed of inter-station communication algorithms in the system layer control, an improved consensus algorithm with a convergence factor is proposed to calculate the average values of TSS state variables needed for the local layer control. Secondly, in the local layer control, the per-unit average power of TSSs is introduced to compensate for the impact of train movement on the droop coefficient. Furthermore, to reduce power loss in the traction network, a base quantity for virtual power is proposed for further compensation of the droop coefficient. Through dynamic compensation of the droop coefficient, a rational sharing of traction power according to rated capacity and power supply distance at TSSs is achieved. Moreover, the voltage average is utilized for secondary compensation of voltage deviations at TSSs. Finally, simulations based on a four-terminal DC TPSS have been established to validate the effectiveness of the proposed method in terms of power sharing and voltage control.
期刊介绍:
Electric Power Systems Research is an international medium for the publication of original papers concerned with the generation, transmission, distribution and utilization of electrical energy. The journal aims at presenting important results of work in this field, whether in the form of applied research, development of new procedures or components, orginal application of existing knowledge or new designapproaches. The scope of Electric Power Systems Research is broad, encompassing all aspects of electric power systems. The following list of topics is not intended to be exhaustive, but rather to indicate topics that fall within the journal purview.
• Generation techniques ranging from advances in conventional electromechanical methods, through nuclear power generation, to renewable energy generation.
• Transmission, spanning the broad area from UHV (ac and dc) to network operation and protection, line routing and design.
• Substation work: equipment design, protection and control systems.
• Distribution techniques, equipment development, and smart grids.
• The utilization area from energy efficiency to distributed load levelling techniques.
• Systems studies including control techniques, planning, optimization methods, stability, security assessment and insulation coordination.