Kanon Sampe , Hideyuki Katsumata , Ikki Tateishi , Mai Furukawa , Satoshi Kaneco
{"title":"Activation of peroxymonosulfate by morphologically modified NiCo2O4 and application to diclofenac degradation","authors":"Kanon Sampe , Hideyuki Katsumata , Ikki Tateishi , Mai Furukawa , Satoshi Kaneco","doi":"10.1016/j.nxmate.2025.100597","DOIUrl":null,"url":null,"abstract":"<div><div>Water pollution caused by pharmaceutical wastewater is becoming increasingly serious. Diclofenac (DCF), a pharmaceutical compound widely used in many medicines, is an organic pollutant that poses potential risks to ecosystems and human health. In this study, a morphologically modified NiCo<sub>2</sub>O<sub>4</sub> (NCO) catalyst was synthesized via a hydrothermal method and employed to activate peroxymonosulfate (PMS) for DCF degradation. As a result, 99.9 % of the DCF was successfully degraded within 10 min. It also succeeded in mineralizing 97.2 % of DCF after 10 min. Moreover, the NCO/PMS system was effective over a wide pH range. The degradation pathways involved both radical and non-radical mechanisms, with <sup>1</sup>O<sub>2</sub>, SO<sub>4</sub><sup>•–</sup>, and <sup>•</sup>OH identified as the primary active species. In addition, the surface hydroxyl groups on the NCO are likely to play a significant role in the degradation process. This paper presents the development of a highly efficient catalyst for the degradation of organic pollutants using PMS.</div></div>","PeriodicalId":100958,"journal":{"name":"Next Materials","volume":"8 ","pages":"Article 100597"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Next Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949822825001157","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Water pollution caused by pharmaceutical wastewater is becoming increasingly serious. Diclofenac (DCF), a pharmaceutical compound widely used in many medicines, is an organic pollutant that poses potential risks to ecosystems and human health. In this study, a morphologically modified NiCo2O4 (NCO) catalyst was synthesized via a hydrothermal method and employed to activate peroxymonosulfate (PMS) for DCF degradation. As a result, 99.9 % of the DCF was successfully degraded within 10 min. It also succeeded in mineralizing 97.2 % of DCF after 10 min. Moreover, the NCO/PMS system was effective over a wide pH range. The degradation pathways involved both radical and non-radical mechanisms, with 1O2, SO4•–, and •OH identified as the primary active species. In addition, the surface hydroxyl groups on the NCO are likely to play a significant role in the degradation process. This paper presents the development of a highly efficient catalyst for the degradation of organic pollutants using PMS.