Unified construction of prenylated and reverse-prenylated oxindoles from isoprene launched by Ni catalysis

IF 15.7 1区 化学 Q1 CHEMISTRY, APPLIED
Ying-Ying Liu , Ying Li , Xue-Ting Li , Su-Yang Xu , Ding-Wei Ji , Xiang-Ping Hu , Qing-An Chen
{"title":"Unified construction of prenylated and reverse-prenylated oxindoles from isoprene launched by Ni catalysis","authors":"Ying-Ying Liu ,&nbsp;Ying Li ,&nbsp;Xue-Ting Li ,&nbsp;Su-Yang Xu ,&nbsp;Ding-Wei Ji ,&nbsp;Xiang-Ping Hu ,&nbsp;Qing-An Chen","doi":"10.1016/S1872-2067(24)60218-4","DOIUrl":null,"url":null,"abstract":"<div><div>As important natural and pharmaceutical motifs, the catalytic construction of structurally diverse 3,3-disubstituted oxindoles often requires elaborate synthetic efforts on optimizations. Herein, we developed a simple and divergent approach for constructing reverse-prenylated and prenylated oxindoles launched by Ni catalysis with bulk chemical isoprene. Using C3-unsubstituted oxindoles as starting materials, mono reverse-prenylation was demonstrated in high chemo- and regioselectivities facilitated by the combination of Ni(0) and monodentate phosphine ligand. Using the obtained reverse-prenylated oxindoles as versatile synthon, substitutions at the pseudobenzylic position with various electrophiles created vicinal quaternary centers in a concise way. With the help of additives (PPh<sub>3</sub> and NaH), air could be directly used as green oxidant to construct prenylated and reverse-prenylated α-hydroxy-oxindoles divergently from the same substrates. In situ esterification of prenylated α-hydroxy-oxindoles allowed subsequent Friedel-Crafts substitutions with diverse nucleophiles to deliver prenyl substituted dimeric or spiro-oxindoles. This protocol provides a divergent synthetic approach for the construction of highly functionalized 3,3-disubstituted oxindoles, which have been otherwise difficult to access in a unified approach.</div></div>","PeriodicalId":9832,"journal":{"name":"Chinese Journal of Catalysis","volume":"70 ","pages":"Pages 444-454"},"PeriodicalIF":15.7000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Catalysis","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1872206724602184","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

As important natural and pharmaceutical motifs, the catalytic construction of structurally diverse 3,3-disubstituted oxindoles often requires elaborate synthetic efforts on optimizations. Herein, we developed a simple and divergent approach for constructing reverse-prenylated and prenylated oxindoles launched by Ni catalysis with bulk chemical isoprene. Using C3-unsubstituted oxindoles as starting materials, mono reverse-prenylation was demonstrated in high chemo- and regioselectivities facilitated by the combination of Ni(0) and monodentate phosphine ligand. Using the obtained reverse-prenylated oxindoles as versatile synthon, substitutions at the pseudobenzylic position with various electrophiles created vicinal quaternary centers in a concise way. With the help of additives (PPh3 and NaH), air could be directly used as green oxidant to construct prenylated and reverse-prenylated α-hydroxy-oxindoles divergently from the same substrates. In situ esterification of prenylated α-hydroxy-oxindoles allowed subsequent Friedel-Crafts substitutions with diverse nucleophiles to deliver prenyl substituted dimeric or spiro-oxindoles. This protocol provides a divergent synthetic approach for the construction of highly functionalized 3,3-disubstituted oxindoles, which have been otherwise difficult to access in a unified approach.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chinese Journal of Catalysis
Chinese Journal of Catalysis 工程技术-工程:化工
CiteScore
25.80
自引率
10.30%
发文量
235
审稿时长
1.2 months
期刊介绍: The journal covers a broad scope, encompassing new trends in catalysis for applications in energy production, environmental protection, and the preparation of materials, petroleum chemicals, and fine chemicals. It explores the scientific foundation for preparing and activating catalysts of commercial interest, emphasizing representative models.The focus includes spectroscopic methods for structural characterization, especially in situ techniques, as well as new theoretical methods with practical impact in catalysis and catalytic reactions.The journal delves into the relationship between homogeneous and heterogeneous catalysis and includes theoretical studies on the structure and reactivity of catalysts.Additionally, contributions on photocatalysis, biocatalysis, surface science, and catalysis-related chemical kinetics are welcomed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信