{"title":"2D nanomaterials in biosensing: Synthesis, characterization, integration in biosensors and their applications","authors":"Desmond Lutomia , Renu Poria , Deepak Kala , Preeti Garg , Rupak Nagraik , Ankur Kaushal , Shagun Gupta , Deepak Kumar","doi":"10.1016/j.biosx.2025.100615","DOIUrl":null,"url":null,"abstract":"<div><div>Recent advances in the synthesis of functional nanomaterials and precisely engineered nanostructures have opened up new avenues for the fabrication of viable biosensors for field analysis. Two-dimensional (2D) nanomaterials provide unique hierarchical structures, high surface area, and layered configurations with multiple length scales and porosity, and the possibility to create functionalities for targeted recognition at their surface. In addition to providing extra features like structural color, ordered morphological features, and the capacity to detect and react to external stimuli, such hierarchical structures provide opportunities to tune the characteristics of materials. Combining these distinctive qualities of the various nanostructure types and using them as a foundation for bimolecular assemblies can yield biosensing platforms with enhanced robustness, sensitivity, and selectivity for the detection of a wide range of analytes, as well as targeted recognition and transduction properties that can have a positive impact on numerous fields. This review describes the classification, synthesis and characterization of 2D nanomaterials and their functionalization. In addition, the merits of the 2D nanomaterials and their applications in health, environmental monitoring and food safety and control are covered. The final part anticipates the advancement of 2D nanomaterials in biosensors, challenges and future directions of 2D nanomaterials in biosensors.</div></div>","PeriodicalId":260,"journal":{"name":"Biosensors and Bioelectronics: X","volume":"24 ","pages":"Article 100615"},"PeriodicalIF":10.6100,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosensors and Bioelectronics: X","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590137025000421","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0
Abstract
Recent advances in the synthesis of functional nanomaterials and precisely engineered nanostructures have opened up new avenues for the fabrication of viable biosensors for field analysis. Two-dimensional (2D) nanomaterials provide unique hierarchical structures, high surface area, and layered configurations with multiple length scales and porosity, and the possibility to create functionalities for targeted recognition at their surface. In addition to providing extra features like structural color, ordered morphological features, and the capacity to detect and react to external stimuli, such hierarchical structures provide opportunities to tune the characteristics of materials. Combining these distinctive qualities of the various nanostructure types and using them as a foundation for bimolecular assemblies can yield biosensing platforms with enhanced robustness, sensitivity, and selectivity for the detection of a wide range of analytes, as well as targeted recognition and transduction properties that can have a positive impact on numerous fields. This review describes the classification, synthesis and characterization of 2D nanomaterials and their functionalization. In addition, the merits of the 2D nanomaterials and their applications in health, environmental monitoring and food safety and control are covered. The final part anticipates the advancement of 2D nanomaterials in biosensors, challenges and future directions of 2D nanomaterials in biosensors.
期刊介绍:
Biosensors and Bioelectronics: X, an open-access companion journal of Biosensors and Bioelectronics, boasts a 2020 Impact Factor of 10.61 (Journal Citation Reports, Clarivate Analytics 2021). Offering authors the opportunity to share their innovative work freely and globally, Biosensors and Bioelectronics: X aims to be a timely and permanent source of information. The journal publishes original research papers, review articles, communications, editorial highlights, perspectives, opinions, and commentaries at the intersection of technological advancements and high-impact applications. Manuscripts submitted to Biosensors and Bioelectronics: X are assessed based on originality and innovation in technology development or applications, aligning with the journal's goal to cater to a broad audience interested in this dynamic field.