C. Rossi , C. Macchi , C. D'Alonzo , M. Venturin , M. Ruscica , A. Corsini , C. Battaglia , S. Bellosta
{"title":"Simvastatin ameliorates senescence-induced mitochondrial dysfunction in vascular smooth muscle cells","authors":"C. Rossi , C. Macchi , C. D'Alonzo , M. Venturin , M. Ruscica , A. Corsini , C. Battaglia , S. Bellosta","doi":"10.1016/j.atherosclerosis.2025.119176","DOIUrl":null,"url":null,"abstract":"<div><h3>Background and aims</h3><div>Senescence and mitochondrial dysfunction are two major indicators of aging. Mitochondria are potential drivers of aging phenotypes and dysfunctional mitochondria are associated with several age-related diseases. There is evidence that senescence induces changes in mitochondrial structure, dynamics, and function. Moreover, senescent vascular smooth muscle cells (VSMCs) are present in atherosclerotic plaques and contribute to their instability. The anti-atherosclerotic effects of simvastatin are well known, but recently other benefits, such as promoting mitochondrial quality and senostatic effects, have been hypothesized. We aimed to analyze simvastatin's senostatic effects in senescent VSMCs.</div></div><div><h3>Methods</h3><div>We established and characterized mitochondrial dysfunction in doxorubicin-induced senescent VSMCs (doxorubicin) or VSMCs serially passaged to induce replicative senescence (old).</div></div><div><h3>Results</h3><div>We observed in both senescent models few typical senescence markers such as altered cell morphology, cell cycle inhibitors, laminB1, an accumulation of dysfunctional mitochondria characterized by reduced mitochondrial membrane potential (MMP) and respiration, accumulation of reactive oxygen species (ROS), and an altered mitochondria morphology. Down-regulation of TFAM and TOM70 expression was observed only in old cells suggesting a reduction of mitochondrial biogenesis. Next, we investigated whether simvastatin could ameliorate age‐associated phenotypes in senescent VSMCs. Simvastatin 0.1 μM reduces the senescence-associated secretory phenotype (SASP) and ROS production and improves mitochondrial respiration in doxorubicin and old VSMCs. Interestingly, the effects of simvastatin on mitochondrial respiration and SASP were replicated by using a siRNA for the hydroxy-methyl-glutaryl-coenzyme A (HMG-CoA) reductase, and abolished by adding mevalonic acid, suggesting that these effects are mediated through the inhibition of HMG-CoA reductase.</div></div><div><h3>Conclusions</h3><div>Our results suggest that simvastatin controls SASP and exerts potentially beneficial therapeutic effects by ameliorating senescence-induced mitochondrial dysfunction in senescent VSMCs.</div></div>","PeriodicalId":8623,"journal":{"name":"Atherosclerosis","volume":"403 ","pages":"Article 119176"},"PeriodicalIF":4.9000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atherosclerosis","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021915025000747","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Background and aims
Senescence and mitochondrial dysfunction are two major indicators of aging. Mitochondria are potential drivers of aging phenotypes and dysfunctional mitochondria are associated with several age-related diseases. There is evidence that senescence induces changes in mitochondrial structure, dynamics, and function. Moreover, senescent vascular smooth muscle cells (VSMCs) are present in atherosclerotic plaques and contribute to their instability. The anti-atherosclerotic effects of simvastatin are well known, but recently other benefits, such as promoting mitochondrial quality and senostatic effects, have been hypothesized. We aimed to analyze simvastatin's senostatic effects in senescent VSMCs.
Methods
We established and characterized mitochondrial dysfunction in doxorubicin-induced senescent VSMCs (doxorubicin) or VSMCs serially passaged to induce replicative senescence (old).
Results
We observed in both senescent models few typical senescence markers such as altered cell morphology, cell cycle inhibitors, laminB1, an accumulation of dysfunctional mitochondria characterized by reduced mitochondrial membrane potential (MMP) and respiration, accumulation of reactive oxygen species (ROS), and an altered mitochondria morphology. Down-regulation of TFAM and TOM70 expression was observed only in old cells suggesting a reduction of mitochondrial biogenesis. Next, we investigated whether simvastatin could ameliorate age‐associated phenotypes in senescent VSMCs. Simvastatin 0.1 μM reduces the senescence-associated secretory phenotype (SASP) and ROS production and improves mitochondrial respiration in doxorubicin and old VSMCs. Interestingly, the effects of simvastatin on mitochondrial respiration and SASP were replicated by using a siRNA for the hydroxy-methyl-glutaryl-coenzyme A (HMG-CoA) reductase, and abolished by adding mevalonic acid, suggesting that these effects are mediated through the inhibition of HMG-CoA reductase.
Conclusions
Our results suggest that simvastatin controls SASP and exerts potentially beneficial therapeutic effects by ameliorating senescence-induced mitochondrial dysfunction in senescent VSMCs.
期刊介绍:
Atherosclerosis has an open access mirror journal Atherosclerosis: X, sharing the same aims and scope, editorial team, submission system and rigorous peer review.
Atherosclerosis brings together, from all sources, papers concerned with investigation on atherosclerosis, its risk factors and clinical manifestations. Atherosclerosis covers basic and translational, clinical and population research approaches to arterial and vascular biology and disease, as well as their risk factors including: disturbances of lipid and lipoprotein metabolism, diabetes and hypertension, thrombosis, and inflammation. The Editors are interested in original or review papers dealing with the pathogenesis, environmental, genetic and epigenetic basis, diagnosis or treatment of atherosclerosis and related diseases as well as their risk factors.