Abeer S. Altowyan , U.H. Kaynar , H. Aydin , M.B. Coban , Z.G. Portakal , S. Akça-Özalp , Jabir Hakami , M. Ayvacikli , M. Topaksu , N. Can
{"title":"Enhanced photoluminescence properties of Eu3+/Li+ co-doped ZrO2: A focus on red and far-red emissions","authors":"Abeer S. Altowyan , U.H. Kaynar , H. Aydin , M.B. Coban , Z.G. Portakal , S. Akça-Özalp , Jabir Hakami , M. Ayvacikli , M. Topaksu , N. Can","doi":"10.1016/j.jphotochem.2025.116408","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, Eu<sup>3+</sup> and Li<sup>+</sup> co-doped ZrO<sub>2</sub> nanophosphors were synthesized using a microwave-assisted gel combustion method. While the synthesis method ensures phase stabilization, it does not directly enhance photoluminescence (PL) intensity. Instead, the observed PL enhancement originates from Li<sup>+</sup> co-doping, which improves charge compensation and modifies local symmetry. Structural analysis confirmed the stabilization of the tetragonal phase due to Li<sup>+</sup> co-doping, which introduced controlled oxygen vacancies. These structural changes led to a 4.67-fold intensity enhancement in red emission at 611 nm (<sup>5</sup>D<sub>0</sub> → <sup>7</sup>F<sub>2</sub> transition), and a 4.26-fold increase in far-red emission at 711 nm (<sup>5</sup>D<sub>0</sub> → <sup>7</sup>F<sub>4</sub> transition). Optimal doping concentrations of Eu<sup>3+</sup> (0.02) and Li<sup>+</sup> (0.03) achieved the highest luminescence intensity while maintaining color purity values up to 88.71 %. High-temperature PL measurements revealed stable emission peaks up to 550 K, demonstrating the material’s thermal stability despite intensity reductions due to thermal quenching. These findings establish Eu<sup>3</sup><sup>+</sup>/Li<sup>+</sup> co-doped ZrO<sub>2</sub> nanophosphors as promising candidates for solid-state lighting, plant growth lighting, and optoelectronic applications requiring enhanced red and far-red emissions.</div></div>","PeriodicalId":16782,"journal":{"name":"Journal of Photochemistry and Photobiology A-chemistry","volume":"466 ","pages":"Article 116408"},"PeriodicalIF":4.1000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Photochemistry and Photobiology A-chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1010603025001480","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, Eu3+ and Li+ co-doped ZrO2 nanophosphors were synthesized using a microwave-assisted gel combustion method. While the synthesis method ensures phase stabilization, it does not directly enhance photoluminescence (PL) intensity. Instead, the observed PL enhancement originates from Li+ co-doping, which improves charge compensation and modifies local symmetry. Structural analysis confirmed the stabilization of the tetragonal phase due to Li+ co-doping, which introduced controlled oxygen vacancies. These structural changes led to a 4.67-fold intensity enhancement in red emission at 611 nm (5D0 → 7F2 transition), and a 4.26-fold increase in far-red emission at 711 nm (5D0 → 7F4 transition). Optimal doping concentrations of Eu3+ (0.02) and Li+ (0.03) achieved the highest luminescence intensity while maintaining color purity values up to 88.71 %. High-temperature PL measurements revealed stable emission peaks up to 550 K, demonstrating the material’s thermal stability despite intensity reductions due to thermal quenching. These findings establish Eu3+/Li+ co-doped ZrO2 nanophosphors as promising candidates for solid-state lighting, plant growth lighting, and optoelectronic applications requiring enhanced red and far-red emissions.
期刊介绍:
JPPA publishes the results of fundamental studies on all aspects of chemical phenomena induced by interactions between light and molecules/matter of all kinds.
All systems capable of being described at the molecular or integrated multimolecular level are appropriate for the journal. This includes all molecular chemical species as well as biomolecular, supramolecular, polymer and other macromolecular systems, as well as solid state photochemistry. In addition, the journal publishes studies of semiconductor and other photoactive organic and inorganic materials, photocatalysis (organic, inorganic, supramolecular and superconductor).
The scope includes condensed and gas phase photochemistry, as well as synchrotron radiation chemistry. A broad range of processes and techniques in photochemistry are covered such as light induced energy, electron and proton transfer; nonlinear photochemical behavior; mechanistic investigation of photochemical reactions and identification of the products of photochemical reactions; quantum yield determinations and measurements of rate constants for primary and secondary photochemical processes; steady-state and time-resolved emission, ultrafast spectroscopic methods, single molecule spectroscopy, time resolved X-ray diffraction, luminescence microscopy, and scattering spectroscopy applied to photochemistry. Papers in emerging and applied areas such as luminescent sensors, electroluminescence, solar energy conversion, atmospheric photochemistry, environmental remediation, and related photocatalytic chemistry are also welcome.