{"title":"Global solvability of a model for tuberculosis granuloma formation","authors":"Mario Fuest , Johannes Lankeit , Masaaki Mizukami","doi":"10.1016/j.nonrwa.2025.104369","DOIUrl":null,"url":null,"abstract":"<div><div>We discuss a nonlinear system of partial differential equations modelling the formation of granuloma during tuberculosis infections and prove the global solvability of the homogeneous Neumann problem for <span><span><span><math><mrow><mfenced><mrow><mtable><mtr><mtd><msub><mrow><mi>u</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><msub><mrow><mi>D</mi></mrow><mrow><mi>u</mi></mrow></msub><mi>Δ</mi><mi>u</mi><mo>−</mo><msub><mrow><mi>χ</mi></mrow><mrow><mi>u</mi></mrow></msub><mo>∇</mo><mi>⋅</mi><mrow><mo>(</mo><mi>u</mi><mo>∇</mo><mi>v</mi><mo>)</mo></mrow><mo>−</mo><msub><mrow><mi>γ</mi></mrow><mrow><mi>u</mi></mrow></msub><mi>u</mi><mi>v</mi><mo>−</mo><msub><mrow><mi>δ</mi></mrow><mrow><mi>u</mi></mrow></msub><mi>u</mi><mo>+</mo><msub><mrow><mi>β</mi></mrow><mrow><mi>u</mi></mrow></msub><mo>,</mo><mspace></mspace></mtd></mtr><mtr><mtd><msub><mrow><mi>v</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><msub><mrow><mi>D</mi></mrow><mrow><mi>v</mi></mrow></msub><mi>Δ</mi><mi>v</mi><mo>+</mo><msub><mrow><mi>ρ</mi></mrow><mrow><mi>v</mi></mrow></msub><mi>v</mi><mo>−</mo><msub><mrow><mi>γ</mi></mrow><mrow><mi>v</mi></mrow></msub><mi>u</mi><mi>v</mi><mo>+</mo><msub><mrow><mi>μ</mi></mrow><mrow><mi>v</mi></mrow></msub><mi>w</mi><mo>,</mo><mspace></mspace></mtd></mtr><mtr><mtd><msub><mrow><mi>w</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><msub><mrow><mi>D</mi></mrow><mrow><mi>w</mi></mrow></msub><mi>Δ</mi><mi>w</mi><mo>+</mo><msub><mrow><mi>γ</mi></mrow><mrow><mi>w</mi></mrow></msub><mi>u</mi><mi>v</mi><mo>−</mo><msub><mrow><mi>α</mi></mrow><mrow><mi>w</mi></mrow></msub><mi>w</mi><mi>z</mi><mo>−</mo><msub><mrow><mi>μ</mi></mrow><mrow><mi>w</mi></mrow></msub><mi>w</mi><mo>,</mo><mspace></mspace></mtd></mtr><mtr><mtd><msub><mrow><mi>z</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><msub><mrow><mi>D</mi></mrow><mrow><mi>z</mi></mrow></msub><mi>Δ</mi><mi>z</mi><mo>−</mo><msub><mrow><mi>χ</mi></mrow><mrow><mi>z</mi></mrow></msub><mo>∇</mo><mi>⋅</mi><mrow><mo>(</mo><mi>z</mi><mo>∇</mo><mi>w</mi><mo>)</mo></mrow><mo>+</mo><msub><mrow><mi>α</mi></mrow><mrow><mi>z</mi></mrow></msub><mi>f</mi><mrow><mo>(</mo><mi>w</mi><mo>)</mo></mrow><mi>z</mi><mo>−</mo><msub><mrow><mi>δ</mi></mrow><mrow><mi>z</mi></mrow></msub><mi>z</mi><mspace></mspace></mtd></mtr></mtable></mrow></mfenced></mrow></math></span></span></span>in bounded domains in the classical and weak sense in the two- and three-dimensional setting, respectively. In order to derive suitable a priori estimates, we study the evolution of the well-known energy functional for the chemotaxis–consumption system both for the <span><math><mrow><mo>(</mo><mi>u</mi><mo>,</mo><mi>v</mi><mo>)</mo></mrow></math></span>- and the <span><math><mrow><mo>(</mo><mi>z</mi><mo>,</mo><mi>w</mi><mo>)</mo></mrow></math></span>-subsystem. A key challenge compared to “pure” consumption systems consists of overcoming the difficulties raised by the additional, in part positive, terms in the second and third equations. This is inter alia achieved by utilizing a dissipative term of the (quasi-)energy functional, which may just be discarded in simpler consumption systems.</div></div>","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":"85 ","pages":"Article 104369"},"PeriodicalIF":1.8000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Real World Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1468121825000550","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
We discuss a nonlinear system of partial differential equations modelling the formation of granuloma during tuberculosis infections and prove the global solvability of the homogeneous Neumann problem for in bounded domains in the classical and weak sense in the two- and three-dimensional setting, respectively. In order to derive suitable a priori estimates, we study the evolution of the well-known energy functional for the chemotaxis–consumption system both for the - and the -subsystem. A key challenge compared to “pure” consumption systems consists of overcoming the difficulties raised by the additional, in part positive, terms in the second and third equations. This is inter alia achieved by utilizing a dissipative term of the (quasi-)energy functional, which may just be discarded in simpler consumption systems.
期刊介绍:
Nonlinear Analysis: Real World Applications welcomes all research articles of the highest quality with special emphasis on applying techniques of nonlinear analysis to model and to treat nonlinear phenomena with which nature confronts us. Coverage of applications includes any branch of science and technology such as solid and fluid mechanics, material science, mathematical biology and chemistry, control theory, and inverse problems.
The aim of Nonlinear Analysis: Real World Applications is to publish articles which are predominantly devoted to employing methods and techniques from analysis, including partial differential equations, functional analysis, dynamical systems and evolution equations, calculus of variations, and bifurcations theory.