Global solvability of a model for tuberculosis granuloma formation

IF 1.8 3区 数学 Q1 MATHEMATICS, APPLIED
Mario Fuest , Johannes Lankeit , Masaaki Mizukami
{"title":"Global solvability of a model for tuberculosis granuloma formation","authors":"Mario Fuest ,&nbsp;Johannes Lankeit ,&nbsp;Masaaki Mizukami","doi":"10.1016/j.nonrwa.2025.104369","DOIUrl":null,"url":null,"abstract":"<div><div>We discuss a nonlinear system of partial differential equations modelling the formation of granuloma during tuberculosis infections and prove the global solvability of the homogeneous Neumann problem for <span><span><span><math><mrow><mfenced><mrow><mtable><mtr><mtd><msub><mrow><mi>u</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><msub><mrow><mi>D</mi></mrow><mrow><mi>u</mi></mrow></msub><mi>Δ</mi><mi>u</mi><mo>−</mo><msub><mrow><mi>χ</mi></mrow><mrow><mi>u</mi></mrow></msub><mo>∇</mo><mi>⋅</mi><mrow><mo>(</mo><mi>u</mi><mo>∇</mo><mi>v</mi><mo>)</mo></mrow><mo>−</mo><msub><mrow><mi>γ</mi></mrow><mrow><mi>u</mi></mrow></msub><mi>u</mi><mi>v</mi><mo>−</mo><msub><mrow><mi>δ</mi></mrow><mrow><mi>u</mi></mrow></msub><mi>u</mi><mo>+</mo><msub><mrow><mi>β</mi></mrow><mrow><mi>u</mi></mrow></msub><mo>,</mo><mspace></mspace></mtd></mtr><mtr><mtd><msub><mrow><mi>v</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><msub><mrow><mi>D</mi></mrow><mrow><mi>v</mi></mrow></msub><mi>Δ</mi><mi>v</mi><mo>+</mo><msub><mrow><mi>ρ</mi></mrow><mrow><mi>v</mi></mrow></msub><mi>v</mi><mo>−</mo><msub><mrow><mi>γ</mi></mrow><mrow><mi>v</mi></mrow></msub><mi>u</mi><mi>v</mi><mo>+</mo><msub><mrow><mi>μ</mi></mrow><mrow><mi>v</mi></mrow></msub><mi>w</mi><mo>,</mo><mspace></mspace></mtd></mtr><mtr><mtd><msub><mrow><mi>w</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><msub><mrow><mi>D</mi></mrow><mrow><mi>w</mi></mrow></msub><mi>Δ</mi><mi>w</mi><mo>+</mo><msub><mrow><mi>γ</mi></mrow><mrow><mi>w</mi></mrow></msub><mi>u</mi><mi>v</mi><mo>−</mo><msub><mrow><mi>α</mi></mrow><mrow><mi>w</mi></mrow></msub><mi>w</mi><mi>z</mi><mo>−</mo><msub><mrow><mi>μ</mi></mrow><mrow><mi>w</mi></mrow></msub><mi>w</mi><mo>,</mo><mspace></mspace></mtd></mtr><mtr><mtd><msub><mrow><mi>z</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><msub><mrow><mi>D</mi></mrow><mrow><mi>z</mi></mrow></msub><mi>Δ</mi><mi>z</mi><mo>−</mo><msub><mrow><mi>χ</mi></mrow><mrow><mi>z</mi></mrow></msub><mo>∇</mo><mi>⋅</mi><mrow><mo>(</mo><mi>z</mi><mo>∇</mo><mi>w</mi><mo>)</mo></mrow><mo>+</mo><msub><mrow><mi>α</mi></mrow><mrow><mi>z</mi></mrow></msub><mi>f</mi><mrow><mo>(</mo><mi>w</mi><mo>)</mo></mrow><mi>z</mi><mo>−</mo><msub><mrow><mi>δ</mi></mrow><mrow><mi>z</mi></mrow></msub><mi>z</mi><mspace></mspace></mtd></mtr></mtable></mrow></mfenced></mrow></math></span></span></span>in bounded domains in the classical and weak sense in the two- and three-dimensional setting, respectively. In order to derive suitable a priori estimates, we study the evolution of the well-known energy functional for the chemotaxis–consumption system both for the <span><math><mrow><mo>(</mo><mi>u</mi><mo>,</mo><mi>v</mi><mo>)</mo></mrow></math></span>- and the <span><math><mrow><mo>(</mo><mi>z</mi><mo>,</mo><mi>w</mi><mo>)</mo></mrow></math></span>-subsystem. A key challenge compared to “pure” consumption systems consists of overcoming the difficulties raised by the additional, in part positive, terms in the second and third equations. This is inter alia achieved by utilizing a dissipative term of the (quasi-)energy functional, which may just be discarded in simpler consumption systems.</div></div>","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":"85 ","pages":"Article 104369"},"PeriodicalIF":1.8000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Real World Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1468121825000550","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

We discuss a nonlinear system of partial differential equations modelling the formation of granuloma during tuberculosis infections and prove the global solvability of the homogeneous Neumann problem for ut=DuΔuχu(uv)γuuvδuu+βu,vt=DvΔv+ρvvγvuv+μvw,wt=DwΔw+γwuvαwwzμww,zt=DzΔzχz(zw)+αzf(w)zδzzin bounded domains in the classical and weak sense in the two- and three-dimensional setting, respectively. In order to derive suitable a priori estimates, we study the evolution of the well-known energy functional for the chemotaxis–consumption system both for the (u,v)- and the (z,w)-subsystem. A key challenge compared to “pure” consumption systems consists of overcoming the difficulties raised by the additional, in part positive, terms in the second and third equations. This is inter alia achieved by utilizing a dissipative term of the (quasi-)energy functional, which may just be discarded in simpler consumption systems.
结核肉芽肿形成模型的全局可解性
讨论了模拟结核感染过程中肉芽肿形成的非线性偏微分方程组,证明了在经典和弱三维条件下,ut=DuΔu - χu∇⋅(u∇v) - γuuv - δuu+βu,vt=DvΔv+ρvv - γvuv+μvw,wt=DwΔw+γwuv - αwwz - μww,zt=DzΔz - χz∇⋅(z∇w)+αzf(w)z - δzzin有界区域的齐次Neumann问题的全局可解性。为了得到合适的先验估计,我们研究了(u,v)-和(z,w)-子系统的趋化消耗系统的能量泛函的演化。与“纯”消费系统相比,一个关键的挑战是克服第二和第三个方程中额外的(部分是积极的)项所带来的困难。除其他外,这是通过利用(准)能量泛函的耗散项来实现的,这可能只是在更简单的消耗系统中被丢弃。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.80
自引率
5.00%
发文量
176
审稿时长
59 days
期刊介绍: Nonlinear Analysis: Real World Applications welcomes all research articles of the highest quality with special emphasis on applying techniques of nonlinear analysis to model and to treat nonlinear phenomena with which nature confronts us. Coverage of applications includes any branch of science and technology such as solid and fluid mechanics, material science, mathematical biology and chemistry, control theory, and inverse problems. The aim of Nonlinear Analysis: Real World Applications is to publish articles which are predominantly devoted to employing methods and techniques from analysis, including partial differential equations, functional analysis, dynamical systems and evolution equations, calculus of variations, and bifurcations theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信