A generalized framework for inferring river bathymetry from image-derived velocity fields

IF 3.1 2区 地球科学 Q2 GEOGRAPHY, PHYSICAL
Carl J. Legleiter, Paul J. Kinzel
{"title":"A generalized framework for inferring river bathymetry from image-derived velocity fields","authors":"Carl J. Legleiter,&nbsp;Paul J. Kinzel","doi":"10.1016/j.geomorph.2025.109732","DOIUrl":null,"url":null,"abstract":"<div><div>Although established techniques for remote sensing of river bathymetry perform poorly in turbid water, image velocimetry can be effective under these conditions. This study describes a framework for mapping both of these attributes: Depths Inferred from Velocities Estimated by Remote Sensing, or DIVERS. The workflow involves linking image-derived velocities to depth via a flow resistance equation and invoking an optimization algorithm. We generalized an earlier formulation of DIVERS by: (1) using moving aircraft river velocimetry (MARV) to obtain a continuous, spatially extensive velocity field; (2) working within a channel-centered coordinate system; (3) allowing for local optimization of multiple parameters on a per-cross section basis; and (4) introducing a second objective function that can be used when discharge is not known. We also quantified the sensitivity of depth estimates to each parameter and input variable. MARV-based velocity estimates agreed closely with field measurements (<span><math><msup><mi>R</mi><mn>2</mn></msup><mo>=</mo><mn>0.81</mn></math></span>) and the use of DIVERS led to cross-sectional mean depths that were correlated with in situ observations (<span><math><msup><mi>R</mi><mn>2</mn></msup><mo>=</mo><mn>0.75</mn></math></span>). Errors in the input velocity field had the greatest impact on depth estimates, but the algorithm was not highly sensitive to initial parameter estimates when a known discharge was available to constrain the optimization. The DIVERS framework is predicated upon a number of simplifying assumptions — steady, uniform, one-dimensional flow and a strict, purely local proportionality between depth and velocity — that impose important limitations, but our results suggest that the approach can provide plausible, first-order estimates of river depths.</div></div>","PeriodicalId":55115,"journal":{"name":"Geomorphology","volume":"479 ","pages":"Article 109732"},"PeriodicalIF":3.1000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geomorphology","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169555X25001424","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Although established techniques for remote sensing of river bathymetry perform poorly in turbid water, image velocimetry can be effective under these conditions. This study describes a framework for mapping both of these attributes: Depths Inferred from Velocities Estimated by Remote Sensing, or DIVERS. The workflow involves linking image-derived velocities to depth via a flow resistance equation and invoking an optimization algorithm. We generalized an earlier formulation of DIVERS by: (1) using moving aircraft river velocimetry (MARV) to obtain a continuous, spatially extensive velocity field; (2) working within a channel-centered coordinate system; (3) allowing for local optimization of multiple parameters on a per-cross section basis; and (4) introducing a second objective function that can be used when discharge is not known. We also quantified the sensitivity of depth estimates to each parameter and input variable. MARV-based velocity estimates agreed closely with field measurements (R2=0.81) and the use of DIVERS led to cross-sectional mean depths that were correlated with in situ observations (R2=0.75). Errors in the input velocity field had the greatest impact on depth estimates, but the algorithm was not highly sensitive to initial parameter estimates when a known discharge was available to constrain the optimization. The DIVERS framework is predicated upon a number of simplifying assumptions — steady, uniform, one-dimensional flow and a strict, purely local proportionality between depth and velocity — that impose important limitations, but our results suggest that the approach can provide plausible, first-order estimates of river depths.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Geomorphology
Geomorphology 地学-地球科学综合
CiteScore
8.00
自引率
10.30%
发文量
309
审稿时长
3.4 months
期刊介绍: Our journal''s scope includes geomorphic themes of: tectonics and regional structure; glacial processes and landforms; fluvial sequences, Quaternary environmental change and dating; fluvial processes and landforms; mass movement, slopes and periglacial processes; hillslopes and soil erosion; weathering, karst and soils; aeolian processes and landforms, coastal dunes and arid environments; coastal and marine processes, estuaries and lakes; modelling, theoretical and quantitative geomorphology; DEM, GIS and remote sensing methods and applications; hazards, applied and planetary geomorphology; and volcanics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信