Towards advanced regenerative therapeutics to tackle cardio-cerebrovascular diseases

IF 1.3 Q3 CARDIAC & CARDIOVASCULAR SYSTEMS
Xi Chen , Weiping Lin , Micky Daniel Tortorella
{"title":"Towards advanced regenerative therapeutics to tackle cardio-cerebrovascular diseases","authors":"Xi Chen ,&nbsp;Weiping Lin ,&nbsp;Micky Daniel Tortorella","doi":"10.1016/j.ahjo.2025.100520","DOIUrl":null,"url":null,"abstract":"<div><div>The development of vascularized organoids as novel modelling tools of the human cardio-cerebrovascular system for preclinical research has become an essential platform for studying human vascularized tissues/organs for development of personalized therapeutics during recent decades. Organ-on-chip technology is promising for investigating physiological in vitro responses in drug screening development and advanced disease models. Vascularized tissue/organ-on-a-chip benefits every step of drug discovery pipeline as a screening tool with close human genome relevance to investigate human systems biology. Simultaneously, cardio-cerebrovascular-on-chip-integrated microfluidic system serves as an alternative to preclinical animal research for studying (patho-)physiological processes of human blood vessels during embryonic development and cardio-cerebrovascular disease. Integrated with next-generation techniques, such as three-dimensional bioprinting of both cells and matrix, may enable vascularized organoid-on-chip-based novel drug development as personalized therapeutics.</div></div>","PeriodicalId":72158,"journal":{"name":"American heart journal plus : cardiology research and practice","volume":"53 ","pages":"Article 100520"},"PeriodicalIF":1.3000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American heart journal plus : cardiology research and practice","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666602225000230","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

The development of vascularized organoids as novel modelling tools of the human cardio-cerebrovascular system for preclinical research has become an essential platform for studying human vascularized tissues/organs for development of personalized therapeutics during recent decades. Organ-on-chip technology is promising for investigating physiological in vitro responses in drug screening development and advanced disease models. Vascularized tissue/organ-on-a-chip benefits every step of drug discovery pipeline as a screening tool with close human genome relevance to investigate human systems biology. Simultaneously, cardio-cerebrovascular-on-chip-integrated microfluidic system serves as an alternative to preclinical animal research for studying (patho-)physiological processes of human blood vessels during embryonic development and cardio-cerebrovascular disease. Integrated with next-generation techniques, such as three-dimensional bioprinting of both cells and matrix, may enable vascularized organoid-on-chip-based novel drug development as personalized therapeutics.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
0
审稿时长
59 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信