{"title":"Route planning of mobile sensing fleets for repeatable environmental monitoring tasks","authors":"Wen Ji , Ke Han , Qian Ge","doi":"10.1016/j.compenvurbsys.2025.102285","DOIUrl":null,"url":null,"abstract":"<div><div>Vehicle-based mobile sensing is a new paradigm for urban data collection. Certain urban sensing scenarios require sensing vehicles for highly targeted monitoring, such as air pollutant and accident site investigation. A hallmark of these scenarios is that the points of interest (POIs) need to be repeatedly visited by a set of agents, whose routes should provide sufficient sensing coverage with coordinated overlap at certain important POIs. For these applications, this paper presents the <em>open team orienteering problem with repeatable visits</em> (OTOP-RV) and specifically tailors an adaptive large neighborhood search (ALNS) algorithm to address it. Test results on randomly generated datasets show that the ALNS significantly outperforms the greedy algorithm (by 7.2 % to 32.4 %), and a heuristic based on sequential orienteering problem (by about 6 %). Finally, a real-world air pollution sensing case study demonstrates the unique applicability of the OTOP-RV and the effectiveness of the proposed algorithms in enhancing sensing capabilities.</div></div>","PeriodicalId":48241,"journal":{"name":"Computers Environment and Urban Systems","volume":"119 ","pages":"Article 102285"},"PeriodicalIF":7.1000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers Environment and Urban Systems","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0198971525000389","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL STUDIES","Score":null,"Total":0}
引用次数: 0
Abstract
Vehicle-based mobile sensing is a new paradigm for urban data collection. Certain urban sensing scenarios require sensing vehicles for highly targeted monitoring, such as air pollutant and accident site investigation. A hallmark of these scenarios is that the points of interest (POIs) need to be repeatedly visited by a set of agents, whose routes should provide sufficient sensing coverage with coordinated overlap at certain important POIs. For these applications, this paper presents the open team orienteering problem with repeatable visits (OTOP-RV) and specifically tailors an adaptive large neighborhood search (ALNS) algorithm to address it. Test results on randomly generated datasets show that the ALNS significantly outperforms the greedy algorithm (by 7.2 % to 32.4 %), and a heuristic based on sequential orienteering problem (by about 6 %). Finally, a real-world air pollution sensing case study demonstrates the unique applicability of the OTOP-RV and the effectiveness of the proposed algorithms in enhancing sensing capabilities.
期刊介绍:
Computers, Environment and Urban Systemsis an interdisciplinary journal publishing cutting-edge and innovative computer-based research on environmental and urban systems, that privileges the geospatial perspective. The journal welcomes original high quality scholarship of a theoretical, applied or technological nature, and provides a stimulating presentation of perspectives, research developments, overviews of important new technologies and uses of major computational, information-based, and visualization innovations. Applied and theoretical contributions demonstrate the scope of computer-based analysis fostering a better understanding of environmental and urban systems, their spatial scope and their dynamics.