Hybrid PVT integrated pyramid solar still: 11E, sustainability, and sustainable development goals assessment

IF 9 1区 工程技术 Q1 ENERGY & FUELS
Md. Shahriar Mohtasim , Md. Golam Kibria , Md Mahamudul Hasan Pranto , Barun K. Das
{"title":"Hybrid PVT integrated pyramid solar still: 11E, sustainability, and sustainable development goals assessment","authors":"Md. Shahriar Mohtasim ,&nbsp;Md. Golam Kibria ,&nbsp;Md Mahamudul Hasan Pranto ,&nbsp;Barun K. Das","doi":"10.1016/j.renene.2025.122914","DOIUrl":null,"url":null,"abstract":"<div><div>Photovoltaic thermal (PVT) integrated solar stills (SSs) can address the challenges associated with electricity scarcity and water desalination. The experiment encompasses a synergistic approach of delivering the heated fluid from the PVT with phase change materials (PVT/PCM) and PVT integrated hybrid nano-materials with fin (PVT/HNPCM/Fin) setups to the water basin of the modified pyramid SSs for enhancing the evaporation rate. A comprehensive analysis is conducted on the impact of hollow circular fins, black sand, hybrid nano-particles with PCM and sponge in SS cases. For PVT scenarios, the effects of hybrid nano-enhanced PCM and fins in serpentine copper pipe layout at an average flow rate of 0.0021 kg/s are also analyzed using 11E sustainability matrices. Modified SS exhibited the highest productivity of 4.109 L/m<sup>2</sup>/day, with a cost reduction of about 94.13 % per liter. Consequently, the PVT/HNPCM/Fin system achieved thermal efficiency of 75.11 % and a relative improvement in electrical energy efficiency of approximately 15.70 % over the traditional PV module. Modified SS exhibits the highest exergo-enviroeconomic factor among the other SSs, with a difference of about 30.57 %. At a moderate cost, modified SS with PVT integration has a high capacity to produce thermal energy for distillation and 6.98 tons of CO<sub>2</sub> emissions mitigation possibilities over the lifetime. Finally, the proposed modification and assimilation not only supports the sustainability of water purification processes with clean electrical energy generation but also contributes significantly to achieving multiple Sustainable Development Goals (SDG 6, 7 and 13) related to energy, water, climate, and economic development.</div></div>","PeriodicalId":419,"journal":{"name":"Renewable Energy","volume":"246 ","pages":"Article 122914"},"PeriodicalIF":9.0000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Renewable Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960148125005762","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Photovoltaic thermal (PVT) integrated solar stills (SSs) can address the challenges associated with electricity scarcity and water desalination. The experiment encompasses a synergistic approach of delivering the heated fluid from the PVT with phase change materials (PVT/PCM) and PVT integrated hybrid nano-materials with fin (PVT/HNPCM/Fin) setups to the water basin of the modified pyramid SSs for enhancing the evaporation rate. A comprehensive analysis is conducted on the impact of hollow circular fins, black sand, hybrid nano-particles with PCM and sponge in SS cases. For PVT scenarios, the effects of hybrid nano-enhanced PCM and fins in serpentine copper pipe layout at an average flow rate of 0.0021 kg/s are also analyzed using 11E sustainability matrices. Modified SS exhibited the highest productivity of 4.109 L/m2/day, with a cost reduction of about 94.13 % per liter. Consequently, the PVT/HNPCM/Fin system achieved thermal efficiency of 75.11 % and a relative improvement in electrical energy efficiency of approximately 15.70 % over the traditional PV module. Modified SS exhibits the highest exergo-enviroeconomic factor among the other SSs, with a difference of about 30.57 %. At a moderate cost, modified SS with PVT integration has a high capacity to produce thermal energy for distillation and 6.98 tons of CO2 emissions mitigation possibilities over the lifetime. Finally, the proposed modification and assimilation not only supports the sustainability of water purification processes with clean electrical energy generation but also contributes significantly to achieving multiple Sustainable Development Goals (SDG 6, 7 and 13) related to energy, water, climate, and economic development.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Renewable Energy
Renewable Energy 工程技术-能源与燃料
CiteScore
18.40
自引率
9.20%
发文量
1955
审稿时长
6.6 months
期刊介绍: Renewable Energy journal is dedicated to advancing knowledge and disseminating insights on various topics and technologies within renewable energy systems and components. Our mission is to support researchers, engineers, economists, manufacturers, NGOs, associations, and societies in staying updated on new developments in their respective fields and applying alternative energy solutions to current practices. As an international, multidisciplinary journal in renewable energy engineering and research, we strive to be a premier peer-reviewed platform and a trusted source of original research and reviews in the field of renewable energy. Join us in our endeavor to drive innovation and progress in sustainable energy solutions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信