Structure and variability in the female genital atrium of Uropodina (Acari: Parasitiformes)

IF 1.7 3区 农林科学 Q2 ENTOMOLOGY
Jeremy Naredo , J. Orlando Combita-Heredia , Thomas van de Kamp , Marcus Zuber , Elias Hamann , Ma. Magdalena Vázquez , Hans Klompen
{"title":"Structure and variability in the female genital atrium of Uropodina (Acari: Parasitiformes)","authors":"Jeremy Naredo ,&nbsp;J. Orlando Combita-Heredia ,&nbsp;Thomas van de Kamp ,&nbsp;Marcus Zuber ,&nbsp;Elias Hamann ,&nbsp;Ma. Magdalena Vázquez ,&nbsp;Hans Klompen","doi":"10.1016/j.asd.2025.101428","DOIUrl":null,"url":null,"abstract":"<div><div>Primary and secondary sexual characters of Mesostigmata are often used in species descriptions and phylogenetic analyses. The use of these characters has been focused almost exclusively on external structures. Digital 3D reconstruction based on synchrotron X-ray microtomography (SR-μCT) data allowed a comparative investigation of the structure of an internal system, the female genital atrium, in the mite lineage Uropodina (Parasitiformes: Mesostigmata). Despite substantial variability in observed structures, a general model for the endogynium, vagina, and muscle structure has been generated using a combination of SR-μCT and light microscopy. Most of the variations are hypothesized as related to species recognition and/or manipulation of the endospermatophore. The recorded variability may have substantial phylogenetic value, as a previously unreported modification of the vagina appears to diagnose a substantial lineage of “higher” Uropodina. This set of observations also support the hypothesis that the large family Urodinychidae is polyphyletic. Overall, SR-μCT and 3D reconstruction turned out to be very helpful for studies on internal organ systems in these very small organisms, lessening the need for laborious dissections or extensive Transmission electron microscopy-based investigations.</div></div>","PeriodicalId":55461,"journal":{"name":"Arthropod Structure & Development","volume":"86 ","pages":"Article 101428"},"PeriodicalIF":1.7000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Arthropod Structure & Development","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1467803925000209","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Primary and secondary sexual characters of Mesostigmata are often used in species descriptions and phylogenetic analyses. The use of these characters has been focused almost exclusively on external structures. Digital 3D reconstruction based on synchrotron X-ray microtomography (SR-μCT) data allowed a comparative investigation of the structure of an internal system, the female genital atrium, in the mite lineage Uropodina (Parasitiformes: Mesostigmata). Despite substantial variability in observed structures, a general model for the endogynium, vagina, and muscle structure has been generated using a combination of SR-μCT and light microscopy. Most of the variations are hypothesized as related to species recognition and/or manipulation of the endospermatophore. The recorded variability may have substantial phylogenetic value, as a previously unreported modification of the vagina appears to diagnose a substantial lineage of “higher” Uropodina. This set of observations also support the hypothesis that the large family Urodinychidae is polyphyletic. Overall, SR-μCT and 3D reconstruction turned out to be very helpful for studies on internal organ systems in these very small organisms, lessening the need for laborious dissections or extensive Transmission electron microscopy-based investigations.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.50
自引率
10.00%
发文量
54
审稿时长
60 days
期刊介绍: Arthropod Structure & Development is a Journal of Arthropod Structural Biology, Development, and Functional Morphology; it considers manuscripts that deal with micro- and neuroanatomy, development, biomechanics, organogenesis in particular under comparative and evolutionary aspects but not merely taxonomic papers. The aim of the journal is to publish papers in the areas of functional and comparative anatomy and development, with an emphasis on the role of cellular organization in organ function. The journal will also publish papers on organogenisis, embryonic and postembryonic development, and organ or tissue regeneration and repair. Manuscripts dealing with comparative and evolutionary aspects of microanatomy and development are encouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信