{"title":"SuperM2M: Supervised and mixture-to-mixture co-learning for speech enhancement and noise-robust ASR","authors":"Zhong-Qiu Wang","doi":"10.1016/j.neunet.2025.107408","DOIUrl":null,"url":null,"abstract":"<div><div>The current dominant approach for neural speech enhancement is based on supervised learning by using simulated training data. The trained models, however, often exhibit limited generalizability to real-recorded data. To address this, this paper investigates training enhancement models directly on real target-domain data. We propose to adapt mixture-to-mixture (M2M) training, originally designed for speaker separation, for speech enhancement, by modeling multi-source noise signals as a single, combined source. In addition, we propose a co-learning algorithm that improves M2M with the help of supervised algorithms. When paired close-talk and far-field mixtures are available for training, M2M realizes speech enhancement by training a deep neural network (DNN) to produce speech and noise estimates in a way such that they can be linearly filtered to reconstruct the close-talk and far-field mixtures. This way, the DNN can be trained directly on real mixtures, and can leverage close-talk and far-field mixtures as a weak supervision to enhance far-field mixtures. To improve M2M, we combine it with supervised approaches to co-train the DNN, where mini-batches of real close-talk and far-field mixture pairs and mini-batches of simulated mixture and clean speech pairs are alternately fed to the DNN, and the loss functions are respectively (a) the mixture reconstruction loss on the real close-talk and far-field mixtures and (b) the regular enhancement loss on the simulated clean speech and noise. We find that, this way, the DNN can learn from real and simulated data to achieve better generalization to real data. We name this algorithm SuperM2M (supervised and mixture-to-mixture co-learning). Evaluation results on the CHiME-4 dataset show its effectiveness and potential.</div></div>","PeriodicalId":49763,"journal":{"name":"Neural Networks","volume":"188 ","pages":"Article 107408"},"PeriodicalIF":6.0000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0893608025002874","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
The current dominant approach for neural speech enhancement is based on supervised learning by using simulated training data. The trained models, however, often exhibit limited generalizability to real-recorded data. To address this, this paper investigates training enhancement models directly on real target-domain data. We propose to adapt mixture-to-mixture (M2M) training, originally designed for speaker separation, for speech enhancement, by modeling multi-source noise signals as a single, combined source. In addition, we propose a co-learning algorithm that improves M2M with the help of supervised algorithms. When paired close-talk and far-field mixtures are available for training, M2M realizes speech enhancement by training a deep neural network (DNN) to produce speech and noise estimates in a way such that they can be linearly filtered to reconstruct the close-talk and far-field mixtures. This way, the DNN can be trained directly on real mixtures, and can leverage close-talk and far-field mixtures as a weak supervision to enhance far-field mixtures. To improve M2M, we combine it with supervised approaches to co-train the DNN, where mini-batches of real close-talk and far-field mixture pairs and mini-batches of simulated mixture and clean speech pairs are alternately fed to the DNN, and the loss functions are respectively (a) the mixture reconstruction loss on the real close-talk and far-field mixtures and (b) the regular enhancement loss on the simulated clean speech and noise. We find that, this way, the DNN can learn from real and simulated data to achieve better generalization to real data. We name this algorithm SuperM2M (supervised and mixture-to-mixture co-learning). Evaluation results on the CHiME-4 dataset show its effectiveness and potential.
期刊介绍:
Neural Networks is a platform that aims to foster an international community of scholars and practitioners interested in neural networks, deep learning, and other approaches to artificial intelligence and machine learning. Our journal invites submissions covering various aspects of neural networks research, from computational neuroscience and cognitive modeling to mathematical analyses and engineering applications. By providing a forum for interdisciplinary discussions between biology and technology, we aim to encourage the development of biologically-inspired artificial intelligence.