IBPL: Information Bottleneck-based Prompt Learning for graph out-of-distribution detection

IF 6 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Yanan Cao , Fengzhao Shi , Qing Yu , Xixun Lin , Chuan Zhou , Lixin Zou , Peng Zhang , Zhao Li , Dawei Yin
{"title":"IBPL: Information Bottleneck-based Prompt Learning for graph out-of-distribution detection","authors":"Yanan Cao ,&nbsp;Fengzhao Shi ,&nbsp;Qing Yu ,&nbsp;Xixun Lin ,&nbsp;Chuan Zhou ,&nbsp;Lixin Zou ,&nbsp;Peng Zhang ,&nbsp;Zhao Li ,&nbsp;Dawei Yin","doi":"10.1016/j.neunet.2025.107381","DOIUrl":null,"url":null,"abstract":"<div><div>When training and test graph samples follow different data distributions, graph out-of-distribution (OOD) detection becomes an indispensable component of constructing the reliable and safe graph learning systems. Motivated by the significant progress on prompt learning, graph prompt-based methods, which enable a well-trained graph neural network to detect OOD graphs without modifying any model parameters, have been a standard benchmark with promising computational efficiency and model effectiveness. However, these methods ignore the influence of overlapping features existed in both in-distribution (ID) and OOD graphs, which weakens the difference between them and leads to sub-optimal detection results. In this paper, we present the <strong>I</strong>nformation <strong>B</strong>ottleneck-based <strong>P</strong>rompt <strong>L</strong>earning (IBPL) to overcome this challenging problem. Specifically, IBPL includes a new graph prompt that jointly performs the mask operation on node features and the graph structure. Building upon this, we develop an information bottleneck (IB)-based objective to optimize the proposed graph prompt. Since the overlapping features are inaccessible, IBPL introduces the noise data augmentation which generates a series of perturbed graphs to fully covering the overlapping features. Through minimizing the mutual information between the prompt graph and the perturbed graphs, our objective can eliminate the overlapping features effectively. In order to avoid the negative impact of perturbed graphs, IBPL simultaneously maximizes the mutual information between the prompt graph and the category label for better extracting the ID features. We conduct experiments on multiple real-world datasets in both supervised and unsupervised scenarios. The empirical results and extensive model analyses demonstrate the superior performance of IBPL over several competitive baselines.</div></div>","PeriodicalId":49763,"journal":{"name":"Neural Networks","volume":"188 ","pages":"Article 107381"},"PeriodicalIF":6.0000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0893608025002606","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

When training and test graph samples follow different data distributions, graph out-of-distribution (OOD) detection becomes an indispensable component of constructing the reliable and safe graph learning systems. Motivated by the significant progress on prompt learning, graph prompt-based methods, which enable a well-trained graph neural network to detect OOD graphs without modifying any model parameters, have been a standard benchmark with promising computational efficiency and model effectiveness. However, these methods ignore the influence of overlapping features existed in both in-distribution (ID) and OOD graphs, which weakens the difference between them and leads to sub-optimal detection results. In this paper, we present the Information Bottleneck-based Prompt Learning (IBPL) to overcome this challenging problem. Specifically, IBPL includes a new graph prompt that jointly performs the mask operation on node features and the graph structure. Building upon this, we develop an information bottleneck (IB)-based objective to optimize the proposed graph prompt. Since the overlapping features are inaccessible, IBPL introduces the noise data augmentation which generates a series of perturbed graphs to fully covering the overlapping features. Through minimizing the mutual information between the prompt graph and the perturbed graphs, our objective can eliminate the overlapping features effectively. In order to avoid the negative impact of perturbed graphs, IBPL simultaneously maximizes the mutual information between the prompt graph and the category label for better extracting the ID features. We conduct experiments on multiple real-world datasets in both supervised and unsupervised scenarios. The empirical results and extensive model analyses demonstrate the superior performance of IBPL over several competitive baselines.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Neural Networks
Neural Networks 工程技术-计算机:人工智能
CiteScore
13.90
自引率
7.70%
发文量
425
审稿时长
67 days
期刊介绍: Neural Networks is a platform that aims to foster an international community of scholars and practitioners interested in neural networks, deep learning, and other approaches to artificial intelligence and machine learning. Our journal invites submissions covering various aspects of neural networks research, from computational neuroscience and cognitive modeling to mathematical analyses and engineering applications. By providing a forum for interdisciplinary discussions between biology and technology, we aim to encourage the development of biologically-inspired artificial intelligence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信