Quantum qubit-optical cavity node: Effects of the temperature and coupling strengths on the cavity Fock-state distribution occupation probability and entropy of the subsystems using Dicke model

IF 4.4 2区 物理与天体物理 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Mohamed Barhoumi , Riccardo Bassoli , Frank H.P. Fitzek
{"title":"Quantum qubit-optical cavity node: Effects of the temperature and coupling strengths on the cavity Fock-state distribution occupation probability and entropy of the subsystems using Dicke model","authors":"Mohamed Barhoumi ,&nbsp;Riccardo Bassoli ,&nbsp;Frank H.P. Fitzek","doi":"10.1016/j.rinp.2025.108214","DOIUrl":null,"url":null,"abstract":"<div><div>One of the most attractive systems for scalable quantum processing is the trapped atom in the optical cavity, which is easily manipulable with lasers. The qubit cavity system represents an attractive structure for quantum optics, with possibilities for applications in quantum detecting, quantum computation, and quantum communication. In addition, the investigation of the cavity-atom system under temperature is a fundamental concept in quantum optics and quantum information science. Here we continue in this quantum way, investigating different qubit(s)-cavity systems (where we increase the numbers of the qubit inside the optical cavity from one to four). Using the Dicke model, we calculate the probability of occupation of the ground state of the cavity <span><math><mrow><mo>〈</mo><msup><mrow><mover><mrow><mi>a</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></mrow><mrow><mi>†</mi></mrow></msup><mover><mrow><mi>a</mi></mrow><mrow><mo>ˆ</mo></mrow></mover><mo>〉</mo></mrow></math></span> and the expectation values <span><math><mrow><mo>〈</mo><msub><mrow><mi>J</mi></mrow><mrow><mi>z</mi></mrow></msub><mo>〉</mo></mrow></math></span> for each system. We find that these probabilities increase as the coupling strength <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>s</mi></mrow></msub></math></span> increases. This leads to reaching the ultra-strong coupling regime, which depends on the number of qubits. To describe the quantum state, we examine the cavity Wigner function WF as a function of the coupling strength <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>s</mi></mrow></msub></math></span>. Under the same parameters (e.g. <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>s</mi></mrow></msub></math></span> and the dissipation rates), we find that the separation of the quantum state in the WFs representation is different from one system to another. Furthermore, since understanding these kinds of systems is very important in order to improve the quantum network system, we study the entropy <span><math><mi>S</mi></math></span> of the subsystems (such as <span><math><mi>S</mi></math></span> of qubit) in each system. Also, we move beyond by studying the effect of the temperature on the Fock-state distribution occupation probability and entropy of the subsystems. Our results present another step to understanding the qubit(s)-cavity interaction to improve the performance of future quantum networks based on this system. Where the interplay between temperature, coupling strengths, and the Fock-state occupation probabilities contributes significantly to the understanding of quantum decoherence and the thermodynamic properties of quantum systems. Our research on cavity qubit systems is crucial to the development and practical use of quantum networks, which will open the door to distributed quantum computing and other quantum technologies.</div></div>","PeriodicalId":21042,"journal":{"name":"Results in Physics","volume":"72 ","pages":"Article 108214"},"PeriodicalIF":4.4000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211379725001081","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

One of the most attractive systems for scalable quantum processing is the trapped atom in the optical cavity, which is easily manipulable with lasers. The qubit cavity system represents an attractive structure for quantum optics, with possibilities for applications in quantum detecting, quantum computation, and quantum communication. In addition, the investigation of the cavity-atom system under temperature is a fundamental concept in quantum optics and quantum information science. Here we continue in this quantum way, investigating different qubit(s)-cavity systems (where we increase the numbers of the qubit inside the optical cavity from one to four). Using the Dicke model, we calculate the probability of occupation of the ground state of the cavity aˆaˆ and the expectation values Jz for each system. We find that these probabilities increase as the coupling strength Cs increases. This leads to reaching the ultra-strong coupling regime, which depends on the number of qubits. To describe the quantum state, we examine the cavity Wigner function WF as a function of the coupling strength Cs. Under the same parameters (e.g. Cs and the dissipation rates), we find that the separation of the quantum state in the WFs representation is different from one system to another. Furthermore, since understanding these kinds of systems is very important in order to improve the quantum network system, we study the entropy S of the subsystems (such as S of qubit) in each system. Also, we move beyond by studying the effect of the temperature on the Fock-state distribution occupation probability and entropy of the subsystems. Our results present another step to understanding the qubit(s)-cavity interaction to improve the performance of future quantum networks based on this system. Where the interplay between temperature, coupling strengths, and the Fock-state occupation probabilities contributes significantly to the understanding of quantum decoherence and the thermodynamic properties of quantum systems. Our research on cavity qubit systems is crucial to the development and practical use of quantum networks, which will open the door to distributed quantum computing and other quantum technologies.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Results in Physics
Results in Physics MATERIALS SCIENCE, MULTIDISCIPLINARYPHYSIC-PHYSICS, MULTIDISCIPLINARY
CiteScore
8.70
自引率
9.40%
发文量
754
审稿时长
50 days
期刊介绍: Results in Physics is an open access journal offering authors the opportunity to publish in all fundamental and interdisciplinary areas of physics, materials science, and applied physics. Papers of a theoretical, computational, and experimental nature are all welcome. Results in Physics accepts papers that are scientifically sound, technically correct and provide valuable new knowledge to the physics community. Topics such as three-dimensional flow and magnetohydrodynamics are not within the scope of Results in Physics. Results in Physics welcomes three types of papers: 1. Full research papers 2. Microarticles: very short papers, no longer than two pages. They may consist of a single, but well-described piece of information, such as: - Data and/or a plot plus a description - Description of a new method or instrumentation - Negative results - Concept or design study 3. Letters to the Editor: Letters discussing a recent article published in Results in Physics are welcome. These are objective, constructive, or educational critiques of papers published in Results in Physics. Accepted letters will be sent to the author of the original paper for a response. Each letter and response is published together. Letters should be received within 8 weeks of the article''s publication. They should not exceed 750 words of text and 10 references.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信