{"title":"A class-AB rail-to-rail operational amplifier with wide supply voltage and high gain","authors":"Sikai Chen, Peng Zhang, Lumiao Zhang, Zhang Zhang","doi":"10.1016/j.mejo.2025.106643","DOIUrl":null,"url":null,"abstract":"<div><div>This paper presents a high-gain rail-to-rail operational amplifier architecture, characterized by its low voltage and high gain. The design incorporates a complementary PMOS and NMOS folded cascode, using a transconductance linear loop to bias the Class-AB stage for push–pull output. Furthermore, the circuit supports a wide input power supply voltage range, operating efficiently over an input voltage span of 1.8 V to 5 V. The op-amp was fabricated using a 90 nm BCD technology, with a core chip size of approximately <span><math><mrow><mn>0</mn><mo>.</mo><mn>455</mn><mspace></mspace><mo>×</mo><mspace></mspace><mn>0</mn><mo>.</mo><mn>374</mn><mspace></mspace><msup><mrow><mtext>mm</mtext></mrow><mrow><mn>2</mn></mrow></msup></mrow></math></span>. Post-simulation results reveal a DC gain of 123 dB, a gain bandwidth of 0.86 MHz, and a noise level of <span><math><mrow><mn>24</mn><mspace></mspace><mtext>nV</mtext><mo>/</mo><msqrt><mrow><mtext>Hz</mtext></mrow></msqrt><mspace></mspace><mi>@</mi><mspace></mspace><mn>10</mn><mspace></mspace><mtext>kHz</mtext></mrow></math></span> with a 1.8 V supply voltage. Measurement outcomes demonstrate a slew rate of <span><math><mrow><mn>0</mn><mo>.</mo><mn>157</mn><mspace></mspace><mtext>V</mtext><mo>/</mo><mi>μ</mi><mtext>s</mtext></mrow></math></span> under loading conditions of 20pF and <span><math><mrow><mn>10</mn><mspace></mspace><mtext>k</mtext><mi>Ω</mi></mrow></math></span>, with an output current of 1 mA and power consumption of <span><math><mrow><mn>21</mn><mo>.</mo><mn>77</mn><mspace></mspace><mi>μ</mi><mtext>A</mtext></mrow></math></span> and <span><math><mrow><mn>25</mn><mo>.</mo><mn>26</mn><mspace></mspace><mi>μ</mi><mtext>A</mtext></mrow></math></span> at 1.8 V and 5 V conditions, respectively.</div></div>","PeriodicalId":49818,"journal":{"name":"Microelectronics Journal","volume":"159 ","pages":"Article 106643"},"PeriodicalIF":1.9000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microelectronics Journal","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S187923912500092X","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents a high-gain rail-to-rail operational amplifier architecture, characterized by its low voltage and high gain. The design incorporates a complementary PMOS and NMOS folded cascode, using a transconductance linear loop to bias the Class-AB stage for push–pull output. Furthermore, the circuit supports a wide input power supply voltage range, operating efficiently over an input voltage span of 1.8 V to 5 V. The op-amp was fabricated using a 90 nm BCD technology, with a core chip size of approximately . Post-simulation results reveal a DC gain of 123 dB, a gain bandwidth of 0.86 MHz, and a noise level of with a 1.8 V supply voltage. Measurement outcomes demonstrate a slew rate of under loading conditions of 20pF and , with an output current of 1 mA and power consumption of and at 1.8 V and 5 V conditions, respectively.
期刊介绍:
Published since 1969, the Microelectronics Journal is an international forum for the dissemination of research and applications of microelectronic systems, circuits, and emerging technologies. Papers published in the Microelectronics Journal have undergone peer review to ensure originality, relevance, and timeliness. The journal thus provides a worldwide, regular, and comprehensive update on microelectronic circuits and systems.
The Microelectronics Journal invites papers describing significant research and applications in all of the areas listed below. Comprehensive review/survey papers covering recent developments will also be considered. The Microelectronics Journal covers circuits and systems. This topic includes but is not limited to: Analog, digital, mixed, and RF circuits and related design methodologies; Logic, architectural, and system level synthesis; Testing, design for testability, built-in self-test; Area, power, and thermal analysis and design; Mixed-domain simulation and design; Embedded systems; Non-von Neumann computing and related technologies and circuits; Design and test of high complexity systems integration; SoC, NoC, SIP, and NIP design and test; 3-D integration design and analysis; Emerging device technologies and circuits, such as FinFETs, SETs, spintronics, SFQ, MTJ, etc.
Application aspects such as signal and image processing including circuits for cryptography, sensors, and actuators including sensor networks, reliability and quality issues, and economic models are also welcome.