Stable MXene/cellulose nanofiber membranes as osmotic energy generators

IF 4.9 2区 化学 Q2 CHEMISTRY, PHYSICAL
Ruoyang Sun , Yumeng Xia , Mengyuan Peng , Yinghui Wang , Jinming Zhang , Qingtao Liu , Shouwei Zhang , Jinfeng Wang
{"title":"Stable MXene/cellulose nanofiber membranes as osmotic energy generators","authors":"Ruoyang Sun ,&nbsp;Yumeng Xia ,&nbsp;Mengyuan Peng ,&nbsp;Yinghui Wang ,&nbsp;Jinming Zhang ,&nbsp;Qingtao Liu ,&nbsp;Shouwei Zhang ,&nbsp;Jinfeng Wang","doi":"10.1016/j.colsurfa.2025.136721","DOIUrl":null,"url":null,"abstract":"<div><div>Osmotic energy is a clean and renewable alternative resource to non-renewable fossil fuel. Harvesting this “blue” energy typically required ion-selective membranes. Two-dimensional (2D) materials are ideal scaffolds for constructing nanofluidic ion-selective membranes in osmotic energy conversion. However, the 2D membranes were often fragile and instable in solutions because of the weak van der Waals interactions between two-dimensional nanosheets. Here, stable MXene nanofluidic membranes were constructed by incorporating cellulose nanofiber (CNF) in MXene. The CNF was used as binder to enhance the mechanical stability in solutions. The resulted MXene/CNF membranes were investigated in terms of structure, ion selectivity and osmotic energy generation. The results showed that the MXene/CNF membranes exhibited excellent cation selectivity due to the negative charged carried by MXene and CNF, benefiting the osmotic energy conversion. The maximum power output density reached up to 1.32 and 0.338 W m<sup>−2</sup> at 1000-fold KCl and 50-fold NaCl concentration gradient, respectively. Moreover, this MXene/CNF energy generator exhibited a long-term output stability. This work demonstrated the great potential of nanofluidic generators based on the two-dimensional material and the biomass material cellulose for osmotic energy conversion processes.</div></div>","PeriodicalId":278,"journal":{"name":"Colloids and Surfaces A: Physicochemical and Engineering Aspects","volume":"716 ","pages":"Article 136721"},"PeriodicalIF":4.9000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Colloids and Surfaces A: Physicochemical and Engineering Aspects","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927775725006247","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Osmotic energy is a clean and renewable alternative resource to non-renewable fossil fuel. Harvesting this “blue” energy typically required ion-selective membranes. Two-dimensional (2D) materials are ideal scaffolds for constructing nanofluidic ion-selective membranes in osmotic energy conversion. However, the 2D membranes were often fragile and instable in solutions because of the weak van der Waals interactions between two-dimensional nanosheets. Here, stable MXene nanofluidic membranes were constructed by incorporating cellulose nanofiber (CNF) in MXene. The CNF was used as binder to enhance the mechanical stability in solutions. The resulted MXene/CNF membranes were investigated in terms of structure, ion selectivity and osmotic energy generation. The results showed that the MXene/CNF membranes exhibited excellent cation selectivity due to the negative charged carried by MXene and CNF, benefiting the osmotic energy conversion. The maximum power output density reached up to 1.32 and 0.338 W m−2 at 1000-fold KCl and 50-fold NaCl concentration gradient, respectively. Moreover, this MXene/CNF energy generator exhibited a long-term output stability. This work demonstrated the great potential of nanofluidic generators based on the two-dimensional material and the biomass material cellulose for osmotic energy conversion processes.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.70
自引率
9.60%
发文量
2421
审稿时长
56 days
期刊介绍: Colloids and Surfaces A: Physicochemical and Engineering Aspects is an international journal devoted to the science underlying applications of colloids and interfacial phenomena. The journal aims at publishing high quality research papers featuring new materials or new insights into the role of colloid and interface science in (for example) food, energy, minerals processing, pharmaceuticals or the environment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信