Rui Xie , Xiaojuun Deng , Yuannxing Yin , Dilafruz Fayziyeva , Elchin Eyvazov , Fu Liu
{"title":"Economic viability of high-performance cycle systems: Energy and cost efficiency insights","authors":"Rui Xie , Xiaojuun Deng , Yuannxing Yin , Dilafruz Fayziyeva , Elchin Eyvazov , Fu Liu","doi":"10.1016/j.esr.2025.101675","DOIUrl":null,"url":null,"abstract":"<div><div>This study evaluates the economic viability of high-performance cycle systems through a comprehensive analysis of energy and cost efficiency factors in thermal energy storage technologies. Our research identifies significant cost-benefit advantages of innovative design approaches over conventional systems in industrial applications. Through rigorous economic modeling and performance testing, we analyzed operational efficiency, capital investment requirements, and long-term financial returns. Results demonstrate that the advanced designs deliver substantial economic benefits by reducing operational times by 33.2%, enhancing energy utilization rates by 48.4%, and improving overall system efficiency by 8.3% compared to traditional approaches. Optimized system configurations further enhanced performance metrics and cost-effectiveness. Our economic analysis reveals significant potential for operational cost reduction and energy efficiency improvements in industrial applications, with projected payback periods shortened by approximately one-third. These findings underscore the economic viability of implementing innovative designs in high-performance cycle systems, with implications for reducing operational costs, improving return on investment, and enhancing market competitiveness in energy-intensive industries. Future research directions include scaling applications for various industrial sectors and quantifying broader economic and sustainability impacts.</div></div>","PeriodicalId":11546,"journal":{"name":"Energy Strategy Reviews","volume":"59 ","pages":"Article 101675"},"PeriodicalIF":7.9000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Strategy Reviews","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211467X25000380","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
This study evaluates the economic viability of high-performance cycle systems through a comprehensive analysis of energy and cost efficiency factors in thermal energy storage technologies. Our research identifies significant cost-benefit advantages of innovative design approaches over conventional systems in industrial applications. Through rigorous economic modeling and performance testing, we analyzed operational efficiency, capital investment requirements, and long-term financial returns. Results demonstrate that the advanced designs deliver substantial economic benefits by reducing operational times by 33.2%, enhancing energy utilization rates by 48.4%, and improving overall system efficiency by 8.3% compared to traditional approaches. Optimized system configurations further enhanced performance metrics and cost-effectiveness. Our economic analysis reveals significant potential for operational cost reduction and energy efficiency improvements in industrial applications, with projected payback periods shortened by approximately one-third. These findings underscore the economic viability of implementing innovative designs in high-performance cycle systems, with implications for reducing operational costs, improving return on investment, and enhancing market competitiveness in energy-intensive industries. Future research directions include scaling applications for various industrial sectors and quantifying broader economic and sustainability impacts.
期刊介绍:
Energy Strategy Reviews is a gold open access journal that provides authoritative content on strategic decision-making and vision-sharing related to society''s energy needs.
Energy Strategy Reviews publishes:
• Analyses
• Methodologies
• Case Studies
• Reviews
And by invitation:
• Report Reviews
• Viewpoints