Ziyi Cheng , Xi Pan , Panjun Dou , Kening Liu , Peng Wan , Yutong Li , Na Tao , Lixin Qian , Wei Wang , Jianhua Chu
{"title":"Bimetallic tellurides electrodes: From synthesis to applications in energy storage and conversion","authors":"Ziyi Cheng , Xi Pan , Panjun Dou , Kening Liu , Peng Wan , Yutong Li , Na Tao , Lixin Qian , Wei Wang , Jianhua Chu","doi":"10.1016/j.jechem.2025.02.047","DOIUrl":null,"url":null,"abstract":"<div><div>The rapid growth in global energy demand has necessitated the development of efficient energy storage and conversion devices, with the aim of enhancing grid stability, promoting the adoption of electric vehicles, and powering portable electronics. However, the performance of these devices is constrained by the limitations of traditional electrode materials and catalysts. Bimetallic tellurides have emerged as a promising solution due to their exceptional synergistic effects, high electronic conductivity, abundant redox-active sites, and outstanding electrochemical stability. Nevertheless, achieving cost-effective synthesis and stable applications remains a significant challenge. Hence, the most recent advances of bimetallic tellurides electrodes from synthesis to application are systematically reviewed. Several synthetic strategies for exquisite bimetallic tellurides nanostructures, including tellurization, ball-milling, solvo/hydrothermal, electrodeposition, wet chemical, and template method, are discussed. Moreover, the applications of bimetallic tellurides are extensively summarized in energy storage and conversion devices, which include alkali metal-ion batteries (Li-ion, Na-ion, and K-ion), supercapacitor, hydrogen evolution reaction (HER), and oxygen evolution reaction (OER). Besides, the challenges and potential solutions of bimetallic telluride for energy applications are also suggested. This work provides fundamental insight and guidelines for the future design of bimetallic tellurides in energy storage and conversion technologies.</div></div>","PeriodicalId":15728,"journal":{"name":"Journal of Energy Chemistry","volume":"106 ","pages":"Pages 360-386"},"PeriodicalIF":13.1000,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Energy Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095495625001950","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Energy","Score":null,"Total":0}
引用次数: 0
Abstract
The rapid growth in global energy demand has necessitated the development of efficient energy storage and conversion devices, with the aim of enhancing grid stability, promoting the adoption of electric vehicles, and powering portable electronics. However, the performance of these devices is constrained by the limitations of traditional electrode materials and catalysts. Bimetallic tellurides have emerged as a promising solution due to their exceptional synergistic effects, high electronic conductivity, abundant redox-active sites, and outstanding electrochemical stability. Nevertheless, achieving cost-effective synthesis and stable applications remains a significant challenge. Hence, the most recent advances of bimetallic tellurides electrodes from synthesis to application are systematically reviewed. Several synthetic strategies for exquisite bimetallic tellurides nanostructures, including tellurization, ball-milling, solvo/hydrothermal, electrodeposition, wet chemical, and template method, are discussed. Moreover, the applications of bimetallic tellurides are extensively summarized in energy storage and conversion devices, which include alkali metal-ion batteries (Li-ion, Na-ion, and K-ion), supercapacitor, hydrogen evolution reaction (HER), and oxygen evolution reaction (OER). Besides, the challenges and potential solutions of bimetallic telluride for energy applications are also suggested. This work provides fundamental insight and guidelines for the future design of bimetallic tellurides in energy storage and conversion technologies.
期刊介绍:
The Journal of Energy Chemistry, the official publication of Science Press and the Dalian Institute of Chemical Physics, Chinese Academy of Sciences, serves as a platform for reporting creative research and innovative applications in energy chemistry. It mainly reports on creative researches and innovative applications of chemical conversions of fossil energy, carbon dioxide, electrochemical energy and hydrogen energy, as well as the conversions of biomass and solar energy related with chemical issues to promote academic exchanges in the field of energy chemistry and to accelerate the exploration, research and development of energy science and technologies.
This journal focuses on original research papers covering various topics within energy chemistry worldwide, including:
Optimized utilization of fossil energy
Hydrogen energy
Conversion and storage of electrochemical energy
Capture, storage, and chemical conversion of carbon dioxide
Materials and nanotechnologies for energy conversion and storage
Chemistry in biomass conversion
Chemistry in the utilization of solar energy