A preconditioning technique of Gauss–Legendre quadrature for the logarithm of symmetric positive definite matrices

IF 2.9 2区 数学 Q1 MATHEMATICS, APPLIED
Fuminori Tatsuoka, Tomohiro Sogabe, Tomoya Kemmochi, Shao-Liang Zhang
{"title":"A preconditioning technique of Gauss–Legendre quadrature for the logarithm of symmetric positive definite matrices","authors":"Fuminori Tatsuoka,&nbsp;Tomohiro Sogabe,&nbsp;Tomoya Kemmochi,&nbsp;Shao-Liang Zhang","doi":"10.1016/j.aml.2025.109552","DOIUrl":null,"url":null,"abstract":"<div><div>This note considers the computation of the logarithm of symmetric positive definite matrices using the Gauss–Legendre (GL) quadrature. The GL quadrature becomes slow when the condition number of the given matrix is large. In this note, we propose a technique dividing the matrix logarithm into two matrix logarithms, where the condition numbers of the divided logarithm arguments are smaller than that of the original matrix. Although the matrix logarithm needs to be computed twice, each computation can be performed more efficiently, and it potentially reduces the overall computational cost. It is shown that the proposed technique is effective when the condition number of the given matrix is approximately between 130 and <span><math><mrow><mn>3</mn><mo>.</mo><mn>0</mn><mo>×</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>5</mn></mrow></msup></mrow></math></span>.</div></div>","PeriodicalId":55497,"journal":{"name":"Applied Mathematics Letters","volume":"167 ","pages":"Article 109552"},"PeriodicalIF":2.9000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics Letters","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0893965925001028","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

This note considers the computation of the logarithm of symmetric positive definite matrices using the Gauss–Legendre (GL) quadrature. The GL quadrature becomes slow when the condition number of the given matrix is large. In this note, we propose a technique dividing the matrix logarithm into two matrix logarithms, where the condition numbers of the divided logarithm arguments are smaller than that of the original matrix. Although the matrix logarithm needs to be computed twice, each computation can be performed more efficiently, and it potentially reduces the overall computational cost. It is shown that the proposed technique is effective when the condition number of the given matrix is approximately between 130 and 3.0×105.
对称正定矩阵对数的高斯-勒让德正交预处理技术
本文考虑用高斯-勒让德(GL)正交法计算对称正定矩阵的对数。当给定矩阵的条件数较大时,GL正交变慢。在本文中,我们提出了一种将矩阵对数分解为两个矩阵对数的技术,其中被分解的对数参数的条件数小于原始矩阵的条件数。虽然矩阵对数需要计算两次,但每次计算都可以更有效地执行,并且可能降低总体计算成本。结果表明,当给定矩阵的条件数近似在130 ~ 3.0×105之间时,该方法是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Mathematics Letters
Applied Mathematics Letters 数学-应用数学
CiteScore
7.70
自引率
5.40%
发文量
347
审稿时长
10 days
期刊介绍: The purpose of Applied Mathematics Letters is to provide a means of rapid publication for important but brief applied mathematical papers. The brief descriptions of any work involving a novel application or utilization of mathematics, or a development in the methodology of applied mathematics is a potential contribution for this journal. This journal''s focus is on applied mathematics topics based on differential equations and linear algebra. Priority will be given to submissions that are likely to appeal to a wide audience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信