Yang Cao , Yan Liu , Xiaoying Shang , Yao Lin , Lushan Lin , Ni Zhang , Hang Gao , Xueyuan Chen
{"title":"Full-color circularly polarized luminescence from perovskite quantum dots embedded within Chiral ZIF-8 matrix","authors":"Yang Cao , Yan Liu , Xiaoying Shang , Yao Lin , Lushan Lin , Ni Zhang , Hang Gao , Xueyuan Chen","doi":"10.1016/j.nantod.2025.102730","DOIUrl":null,"url":null,"abstract":"<div><div>The exploration of circularly polarized luminescence (CPL) materials based on perovskite quantum dots (PeQDs) has garnered significant interest across various disciplines owing to their extensive potential in optical applications. However, conventional perovskite-based CPL materials frequently encounter formidable challenges, including complex fabrication processes, limited emission bandwidths, inevitable anion exchange, and aggregation-induced quenching. To address these challenges, we proposed a unique approach to develop solid-state CPL nanohybrids with superior full-color CPL by integrating CsPbX<sub>3</sub> (X = Cl, Br, I) PeQDs into amino acid co-assembled chiral metal-organic frameworks (CMOFs). By in situ generating PeQDs within L/D-ZIF-8 CMOFs, we achieved solid-state CPL nanohybrids (L/D-ZIF-8⊃PeQDs) that exhibited enhanced CPL properties and stability. The chiral microenvironment provided by the CMOFs not only boosts CPL performance but also effectively mitigates issues such as anion exchange and aggregation-induced quenching. More intriguingly, such nanohybrids displayed tunable CPL emissions across the entire visible spectrum, achieving a maximum dissymmetry factor (<em>g</em><sub>lum</sub>) value of 1.41 × 10<sup>−3</sup> and a photoluminescence quantum yield of up to 13 %. Furthermore, we showcased their proof-of-concept application by fabricating circularly polarized red-green-blue and white light-emitting diodes with an impressive color gamut exceeding 137 % NTSC, thereby unveiling the significance of our approach in promoting CPL functionalities of perovskite-based materials.</div></div>","PeriodicalId":395,"journal":{"name":"Nano Today","volume":"62 ","pages":"Article 102730"},"PeriodicalIF":13.2000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Today","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1748013225001021","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The exploration of circularly polarized luminescence (CPL) materials based on perovskite quantum dots (PeQDs) has garnered significant interest across various disciplines owing to their extensive potential in optical applications. However, conventional perovskite-based CPL materials frequently encounter formidable challenges, including complex fabrication processes, limited emission bandwidths, inevitable anion exchange, and aggregation-induced quenching. To address these challenges, we proposed a unique approach to develop solid-state CPL nanohybrids with superior full-color CPL by integrating CsPbX3 (X = Cl, Br, I) PeQDs into amino acid co-assembled chiral metal-organic frameworks (CMOFs). By in situ generating PeQDs within L/D-ZIF-8 CMOFs, we achieved solid-state CPL nanohybrids (L/D-ZIF-8⊃PeQDs) that exhibited enhanced CPL properties and stability. The chiral microenvironment provided by the CMOFs not only boosts CPL performance but also effectively mitigates issues such as anion exchange and aggregation-induced quenching. More intriguingly, such nanohybrids displayed tunable CPL emissions across the entire visible spectrum, achieving a maximum dissymmetry factor (glum) value of 1.41 × 10−3 and a photoluminescence quantum yield of up to 13 %. Furthermore, we showcased their proof-of-concept application by fabricating circularly polarized red-green-blue and white light-emitting diodes with an impressive color gamut exceeding 137 % NTSC, thereby unveiling the significance of our approach in promoting CPL functionalities of perovskite-based materials.
期刊介绍:
Nano Today is a journal dedicated to publishing influential and innovative work in the field of nanoscience and technology. It covers a wide range of subject areas including biomaterials, materials chemistry, materials science, chemistry, bioengineering, biochemistry, genetics and molecular biology, engineering, and nanotechnology. The journal considers articles that inform readers about the latest research, breakthroughs, and topical issues in these fields. It provides comprehensive coverage through a mixture of peer-reviewed articles, research news, and information on key developments. Nano Today is abstracted and indexed in Science Citation Index, Ei Compendex, Embase, Scopus, and INSPEC.