Sulfur modulated oxygen-rich porous carbon exhibiting high-capacity as cathode for sodium ion hybrid capacitors

IF 10.5 2区 材料科学 Q1 CHEMISTRY, PHYSICAL
Wancheng Ren , Yan Xiong , Lei Yang , Yafei Zhang , Huanyu Liang , Chunliu Zhu , Xinyu Wang , Jingwei Chen , Weiqian Tian , Minghua Huang , Huanlei Wang
{"title":"Sulfur modulated oxygen-rich porous carbon exhibiting high-capacity as cathode for sodium ion hybrid capacitors","authors":"Wancheng Ren ,&nbsp;Yan Xiong ,&nbsp;Lei Yang ,&nbsp;Yafei Zhang ,&nbsp;Huanyu Liang ,&nbsp;Chunliu Zhu ,&nbsp;Xinyu Wang ,&nbsp;Jingwei Chen ,&nbsp;Weiqian Tian ,&nbsp;Minghua Huang ,&nbsp;Huanlei Wang","doi":"10.1016/j.carbon.2025.120245","DOIUrl":null,"url":null,"abstract":"<div><div>Sodium-ion hybrid capacitors (SIHCs) offer significant potential for energy storage applications, owing to their high energy density, excellent power density, and the abundance of sodium resources. However, the specific capacity of carbon-based cathodes is considerably lower than that of battery-type anodes, creating a capacity imbalance that limits the overall energy density of SIHCs. Therefore, developing high-performance carbon cathodes is crucial for enhancing their energy storage capabilities. Herein, we report the successful synthesis of sulfur- and oxygen-doped porous carbon (SOPC). The resulting material features an interconnected, honeycomb-like pore structure with an exceptionally high specific surface area of 1219 m<sup>2</sup> g<sup>−1</sup>. Its hierarchical pore structure significantly improves ion transport and accelerates adsorption/desorption processes. Additionally, the SOPC contains 6.96 % sulfur and 9.84 % oxygen. The introduction of sulfur enhances the pseudocapacitive behavior of the oxygen-rich porous carbon, achieving a high specific capacity of 135.2 mAh g<sup>−1</sup> at 0.05 A g<sup>−1</sup> and 63.8 mAh g<sup>−1</sup> at 10 A g<sup>−1</sup>. Consequently, SOPC-based SIHCs exhibit an impressive energy density of 105.6 Wh kg<sup>−1</sup> and excellent capacity retention of 83.5 % after 4000 cycles at 10 A g<sup>−1</sup>. These results highlight the considerable potential of sulfur-modulated, oxygen-rich porous carbon materials for high-performance energy storage applications.</div></div>","PeriodicalId":262,"journal":{"name":"Carbon","volume":"238 ","pages":"Article 120245"},"PeriodicalIF":10.5000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0008622325002611","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Sodium-ion hybrid capacitors (SIHCs) offer significant potential for energy storage applications, owing to their high energy density, excellent power density, and the abundance of sodium resources. However, the specific capacity of carbon-based cathodes is considerably lower than that of battery-type anodes, creating a capacity imbalance that limits the overall energy density of SIHCs. Therefore, developing high-performance carbon cathodes is crucial for enhancing their energy storage capabilities. Herein, we report the successful synthesis of sulfur- and oxygen-doped porous carbon (SOPC). The resulting material features an interconnected, honeycomb-like pore structure with an exceptionally high specific surface area of 1219 m2 g−1. Its hierarchical pore structure significantly improves ion transport and accelerates adsorption/desorption processes. Additionally, the SOPC contains 6.96 % sulfur and 9.84 % oxygen. The introduction of sulfur enhances the pseudocapacitive behavior of the oxygen-rich porous carbon, achieving a high specific capacity of 135.2 mAh g−1 at 0.05 A g−1 and 63.8 mAh g−1 at 10 A g−1. Consequently, SOPC-based SIHCs exhibit an impressive energy density of 105.6 Wh kg−1 and excellent capacity retention of 83.5 % after 4000 cycles at 10 A g−1. These results highlight the considerable potential of sulfur-modulated, oxygen-rich porous carbon materials for high-performance energy storage applications.

Abstract Image

硫调制富氧多孔碳作为钠离子杂化电容器阴极具有高容量
钠离子混合电容器(sihc)由于其高能量密度、优异的功率密度和丰富的钠资源,在储能应用中具有巨大的潜力。然而,碳基阴极的比容量远低于电池型阳极,造成容量不平衡,限制了sihc的总能量密度。因此,开发高性能的碳阴极对于提高其储能能力至关重要。本文报道了硫氧掺杂多孔碳(SOPC)的成功合成。所得材料具有相互连接的蜂窝状孔隙结构,具有1219 m2 g−1的超高比表面积。其层次化的孔隙结构显著改善了离子传输,加速了吸附/解吸过程。此外,SOPC含有6.96%的硫和9.84%的氧。硫的引入增强了富氧多孔碳的赝电容行为,在0.05 a g−1和10 a g−1下实现了135.2 mAh g−1和63.8 mAh g−1的高比容量。因此,基于sopc的sihc在10 A g−1下循环4000次后表现出令人印象深刻的105.6 Wh kg−1的能量密度和83.5%的优异容量保持率。这些结果突出了硫调制、富氧多孔碳材料在高性能储能应用中的巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Carbon
Carbon 工程技术-材料科学:综合
CiteScore
20.80
自引率
7.30%
发文量
0
审稿时长
23 days
期刊介绍: The journal Carbon is an international multidisciplinary forum for communicating scientific advances in the field of carbon materials. It reports new findings related to the formation, structure, properties, behaviors, and technological applications of carbons. Carbons are a broad class of ordered or disordered solid phases composed primarily of elemental carbon, including but not limited to carbon black, carbon fibers and filaments, carbon nanotubes, diamond and diamond-like carbon, fullerenes, glassy carbon, graphite, graphene, graphene-oxide, porous carbons, pyrolytic carbon, and other sp2 and non-sp2 hybridized carbon systems. Carbon is the companion title to the open access journal Carbon Trends. Relevant application areas for carbon materials include biology and medicine, catalysis, electronic, optoelectronic, spintronic, high-frequency, and photonic devices, energy storage and conversion systems, environmental applications and water treatment, smart materials and systems, and structural and thermal applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信