Felipe Lutckmeier , Matheus Kuhn , Ricardo Jacques , Allan Dias , Cristiano Ubessi , Håvar Ilstad , Rodrigo Carvalhal , Thomas Clarke
{"title":"Collapse resistance of mechanically lined pipes (MLP): A numerical and experimental study investigating the effects of friction coefficient","authors":"Felipe Lutckmeier , Matheus Kuhn , Ricardo Jacques , Allan Dias , Cristiano Ubessi , Håvar Ilstad , Rodrigo Carvalhal , Thomas Clarke","doi":"10.1016/j.ijpvp.2025.105517","DOIUrl":null,"url":null,"abstract":"<div><div>This study aims at investigating and quantifying the effect of corrosion-resistant alloy (CRA) liners on the resistance to collapse by external pressure of subsea mechanically lined pipes (MLP) through a comparison of experimental data provided by full-scale testing and finite element modelling (FEM) results. Collapse pressures and respective failure characteristics were identified for a wide range of pipe diameters and wall thicknesses, and the influence of parameters such as ovality and eccentricity was considered. Mechanical tests were performed on samples extracted from commercial pipes to measure the friction between the steel carrier pipe and the liner, and these results were included in the models. Both the experimental and numerical results demonstrate that the liner is critical in improving the collapse resistance of MLPs. They also suggest that existing subsea pipeline design standards may be overly conservative when the influence of the liner in the collapse resistance of MLP is not considered.</div></div>","PeriodicalId":54946,"journal":{"name":"International Journal of Pressure Vessels and Piping","volume":"216 ","pages":"Article 105517"},"PeriodicalIF":3.0000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Pressure Vessels and Piping","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0308016125000870","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This study aims at investigating and quantifying the effect of corrosion-resistant alloy (CRA) liners on the resistance to collapse by external pressure of subsea mechanically lined pipes (MLP) through a comparison of experimental data provided by full-scale testing and finite element modelling (FEM) results. Collapse pressures and respective failure characteristics were identified for a wide range of pipe diameters and wall thicknesses, and the influence of parameters such as ovality and eccentricity was considered. Mechanical tests were performed on samples extracted from commercial pipes to measure the friction between the steel carrier pipe and the liner, and these results were included in the models. Both the experimental and numerical results demonstrate that the liner is critical in improving the collapse resistance of MLPs. They also suggest that existing subsea pipeline design standards may be overly conservative when the influence of the liner in the collapse resistance of MLP is not considered.
期刊介绍:
Pressure vessel engineering technology is of importance in many branches of industry. This journal publishes the latest research results and related information on all its associated aspects, with particular emphasis on the structural integrity assessment, maintenance and life extension of pressurised process engineering plants.
The anticipated coverage of the International Journal of Pressure Vessels and Piping ranges from simple mass-produced pressure vessels to large custom-built vessels and tanks. Pressure vessels technology is a developing field, and contributions on the following topics will therefore be welcome:
• Pressure vessel engineering
• Structural integrity assessment
• Design methods
• Codes and standards
• Fabrication and welding
• Materials properties requirements
• Inspection and quality management
• Maintenance and life extension
• Ageing and environmental effects
• Life management
Of particular importance are papers covering aspects of significant practical application which could lead to major improvements in economy, reliability and useful life. While most accepted papers represent the results of original applied research, critical reviews of topical interest by world-leading experts will also appear from time to time.
International Journal of Pressure Vessels and Piping is indispensable reading for engineering professionals involved in the energy, petrochemicals, process plant, transport, aerospace and related industries; for manufacturers of pressure vessels and ancillary equipment; and for academics pursuing research in these areas.