Research on the recrystallization behavior, strengthening and toughening synergy, and fracture mechanisms of multi-layer AZ31 composite sheets using single-pass large-strain rolling techniques

IF 6.1 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Yuchen Zhao , Tao Jiang , Jiyu Wu , Shenao Jiang , Wenjun Zhou , Wei Yu , Shaolei Liu , Wanshun Zhang , Yong Li , Yonghui Sun , Hongyang Zhao , Guangming Xu , Zhaodong Wang
{"title":"Research on the recrystallization behavior, strengthening and toughening synergy, and fracture mechanisms of multi-layer AZ31 composite sheets using single-pass large-strain rolling techniques","authors":"Yuchen Zhao ,&nbsp;Tao Jiang ,&nbsp;Jiyu Wu ,&nbsp;Shenao Jiang ,&nbsp;Wenjun Zhou ,&nbsp;Wei Yu ,&nbsp;Shaolei Liu ,&nbsp;Wanshun Zhang ,&nbsp;Yong Li ,&nbsp;Yonghui Sun ,&nbsp;Hongyang Zhao ,&nbsp;Guangming Xu ,&nbsp;Zhaodong Wang","doi":"10.1016/j.msea.2025.148256","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, we utilized single-pass large-strain rolling technology to successfully fabricate multi-layered AZ31 magnesium alloy composite sheets with excellent mechanical properties. Using SEM analysis, large-area EBSD stitching tests, and tensile experiments, we systematically investigated the microstructure evolution, recrystallization behavior, structure-performance response mechanism, and fracture mechanism of the composite sheets. The results of our research revealed that the degree of recrystallization in the material increases with the number of composite layers, primarily driven by twinning-induced recrystallization. With five layers, the sheets achieve optimal overall mechanical performances, with a tensile strength of 258 MPa, an elongation rate of 22.7 %, and a strength-ductility product of 47.2 MPa%. Furthermore, we ascertained that the main fracture mechanism is ductile fracture. Calculations showed that the primary strengthening mechanisms are grain refinement, dislocation strengthening, and texture strengthening. Of these, dislocation strengthening exerts the greatest influence on enhancing material performance. The findings of this research demonstrate the feasibility of using single-pass large-strain rolling for producing multi-layered AZ31 magnesium alloy composite sheets. Besides, this paper also offers valuable theoretical and technical references for producing fine-grained, high-strength magnesium alloys.</div></div>","PeriodicalId":385,"journal":{"name":"Materials Science and Engineering: A","volume":"932 ","pages":"Article 148256"},"PeriodicalIF":6.1000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science and Engineering: A","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921509325004800","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, we utilized single-pass large-strain rolling technology to successfully fabricate multi-layered AZ31 magnesium alloy composite sheets with excellent mechanical properties. Using SEM analysis, large-area EBSD stitching tests, and tensile experiments, we systematically investigated the microstructure evolution, recrystallization behavior, structure-performance response mechanism, and fracture mechanism of the composite sheets. The results of our research revealed that the degree of recrystallization in the material increases with the number of composite layers, primarily driven by twinning-induced recrystallization. With five layers, the sheets achieve optimal overall mechanical performances, with a tensile strength of 258 MPa, an elongation rate of 22.7 %, and a strength-ductility product of 47.2 MPa%. Furthermore, we ascertained that the main fracture mechanism is ductile fracture. Calculations showed that the primary strengthening mechanisms are grain refinement, dislocation strengthening, and texture strengthening. Of these, dislocation strengthening exerts the greatest influence on enhancing material performance. The findings of this research demonstrate the feasibility of using single-pass large-strain rolling for producing multi-layered AZ31 magnesium alloy composite sheets. Besides, this paper also offers valuable theoretical and technical references for producing fine-grained, high-strength magnesium alloys.
采用单道次大应变轧制技术研究多层AZ31复合板材的再结晶行为、强化增韧协同效应及断裂机制
在本研究中,我们利用单道次大应变轧制技术成功制备了具有优异力学性能的多层AZ31镁合金复合板材。通过SEM分析、大面积EBSD拼接试验和拉伸实验,系统研究了复合材料的微观组织演变、再结晶行为、结构-性能响应机制和断裂机理。研究结果表明,材料的再结晶程度随着复合层数的增加而增加,这主要是由孪晶诱导的再结晶驱动的。五层板的综合力学性能最佳,抗拉强度为258 MPa,伸长率为22.7%,强度-延性产品为47.2% MPa%。此外,我们确定了主要的断裂机制是韧性断裂。计算表明,合金的主要强化机制是晶粒细化、位错强化和织构强化。其中,位错强化对提高材料性能的影响最大。研究结果表明,采用单道次大应变轧制生产多层AZ31镁合金复合板材是可行的。为生产细晶高强度镁合金提供了有价值的理论和技术参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials Science and Engineering: A
Materials Science and Engineering: A 工程技术-材料科学:综合
CiteScore
11.50
自引率
15.60%
发文量
1811
审稿时长
31 days
期刊介绍: Materials Science and Engineering A provides an international medium for the publication of theoretical and experimental studies related to the load-bearing capacity of materials as influenced by their basic properties, processing history, microstructure and operating environment. Appropriate submissions to Materials Science and Engineering A should include scientific and/or engineering factors which affect the microstructure - strength relationships of materials and report the changes to mechanical behavior.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信