Junho Yun, Dongchul Sung, Yunjae Kim, Suklyun Hong
{"title":"Electronic properties of bilayer graphene/Janus MoSTe heterostructure","authors":"Junho Yun, Dongchul Sung, Yunjae Kim, Suklyun Hong","doi":"10.1016/j.cap.2025.03.010","DOIUrl":null,"url":null,"abstract":"<div><div>A notable feature of 2D materials is their ability to form van der Waals heterostructures, enabling tailored electronic properties. Among these, Janus TMDs, with their asymmetric structure and dipole moment, exhibit unique properties like piezoelectricity, Rashba effect, and catalytic activity. In this study, we have performed density functional theory (DFT) calculations to investigate the electronic properties of a heterostructure composed of bilayer graphene (BLG) and a Janus MoSTe monolayer, focusing on the difference in interfacial contact behaviors between them. Our calculations indicate that the Dirac cone in BLG within the BLG/Janus MoSTe heterostructure opens due to electron transfer at the metal-semiconductor interface and the electric field generated by the asymmetry of Janus MoSTe. Depending on the contact orientation, this interaction results in BLG's bandgaps of 46 meV and 70 meV, respectively, highlighting the tunability and potential applications of BLG/Janus TMD heterostructures in optoelectronic devices.</div></div>","PeriodicalId":11037,"journal":{"name":"Current Applied Physics","volume":"74 ","pages":"Pages 12-18"},"PeriodicalIF":2.4000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Applied Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1567173925000653","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
A notable feature of 2D materials is their ability to form van der Waals heterostructures, enabling tailored electronic properties. Among these, Janus TMDs, with their asymmetric structure and dipole moment, exhibit unique properties like piezoelectricity, Rashba effect, and catalytic activity. In this study, we have performed density functional theory (DFT) calculations to investigate the electronic properties of a heterostructure composed of bilayer graphene (BLG) and a Janus MoSTe monolayer, focusing on the difference in interfacial contact behaviors between them. Our calculations indicate that the Dirac cone in BLG within the BLG/Janus MoSTe heterostructure opens due to electron transfer at the metal-semiconductor interface and the electric field generated by the asymmetry of Janus MoSTe. Depending on the contact orientation, this interaction results in BLG's bandgaps of 46 meV and 70 meV, respectively, highlighting the tunability and potential applications of BLG/Janus TMD heterostructures in optoelectronic devices.
期刊介绍:
Current Applied Physics (Curr. Appl. Phys.) is a monthly published international journal covering all the fields of applied science investigating the physics of the advanced materials for future applications.
Other areas covered: Experimental and theoretical aspects of advanced materials and devices dealing with synthesis or structural chemistry, physical and electronic properties, photonics, engineering applications, and uniquely pertinent measurement or analytical techniques.
Current Applied Physics, published since 2001, covers physics, chemistry and materials science, including bio-materials, with their engineering aspects. It is a truly interdisciplinary journal opening a forum for scientists of all related fields, a unique point of the journal discriminating it from other worldwide and/or Pacific Rim applied physics journals.
Regular research papers, letters and review articles with contents meeting the scope of the journal will be considered for publication after peer review.
The Journal is owned by the Korean Physical Society.