Understanding the coupled thermo-electro-osmotic transport in asymmetrically charged nanochannels

IF 4.9 2区 工程技术 Q1 ENGINEERING, MECHANICAL
Muhammad Farhan , Wenyao Zhang , Qiuwang Wang , Cunlu Zhao
{"title":"Understanding the coupled thermo-electro-osmotic transport in asymmetrically charged nanochannels","authors":"Muhammad Farhan ,&nbsp;Wenyao Zhang ,&nbsp;Qiuwang Wang ,&nbsp;Cunlu Zhao","doi":"10.1016/j.ijthermalsci.2025.109872","DOIUrl":null,"url":null,"abstract":"<div><div>Nanofluidic thermo-diffusion, encompassing both thermo-electric and thermo-osmotic effects, is gaining increasing attention for applications in low-grade thermal energy conversion, bio-molecular sensing, charge separation, and desalination. However, the influence of asymmetric surface charge density in thermally-driven nanochannel configurations has remained largely unexplored. This study presents a computational investigation using the extended Nernst–Planck–Poisson–Navier–Stokes and energy equations to examine the effects of Debye length and surface charge configurations (unipolar vs. bipolar) on thermo-electro-osmotic characteristics in nanochannels. Two electrolyte solutions, NaCl and NaI, were assessed, with a focus on ion-specific thermophobic and thermophilic behaviors. The results reveal that unipolar channels show a strong dependence on the Debye length, with significant effects on short-circuit current and Seebeck coefficient, while bipolar configurations exhibit rectified and monotonic behavior that is largely independent of surface charge density. Thermo-osmotic coefficients, evaluated under both short- and open-circuit conditions, demonstrate that bipolar channels accumulate responses with decreasing Debye length, contrasting with the discrete shifts observed in unipolar channels. The superior thermophoretic properties of <span><math><msup><mrow><mtext>I</mtext></mrow><mrow><mo>−</mo></mrow></msup></math></span> in NaI solutions consistently lead to higher performance compared to NaCl, particularly in specific bipolar configurations. These findings underscore the critical role of surface charge polarity and ionic mobility in influencing the magnitude and direction of thermo-electro-osmotic responses, highlighting the potential of asymmetric nanochannels to achieve controlled ionic transport and rectification. This work provides essential insights for the design of next-generation nanofluidic devices and advances our understanding of thermally-driven transport phenomena in nanofluidic systems.</div></div>","PeriodicalId":341,"journal":{"name":"International Journal of Thermal Sciences","volume":"214 ","pages":"Article 109872"},"PeriodicalIF":4.9000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Thermal Sciences","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1290072925001954","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Nanofluidic thermo-diffusion, encompassing both thermo-electric and thermo-osmotic effects, is gaining increasing attention for applications in low-grade thermal energy conversion, bio-molecular sensing, charge separation, and desalination. However, the influence of asymmetric surface charge density in thermally-driven nanochannel configurations has remained largely unexplored. This study presents a computational investigation using the extended Nernst–Planck–Poisson–Navier–Stokes and energy equations to examine the effects of Debye length and surface charge configurations (unipolar vs. bipolar) on thermo-electro-osmotic characteristics in nanochannels. Two electrolyte solutions, NaCl and NaI, were assessed, with a focus on ion-specific thermophobic and thermophilic behaviors. The results reveal that unipolar channels show a strong dependence on the Debye length, with significant effects on short-circuit current and Seebeck coefficient, while bipolar configurations exhibit rectified and monotonic behavior that is largely independent of surface charge density. Thermo-osmotic coefficients, evaluated under both short- and open-circuit conditions, demonstrate that bipolar channels accumulate responses with decreasing Debye length, contrasting with the discrete shifts observed in unipolar channels. The superior thermophoretic properties of I in NaI solutions consistently lead to higher performance compared to NaCl, particularly in specific bipolar configurations. These findings underscore the critical role of surface charge polarity and ionic mobility in influencing the magnitude and direction of thermo-electro-osmotic responses, highlighting the potential of asymmetric nanochannels to achieve controlled ionic transport and rectification. This work provides essential insights for the design of next-generation nanofluidic devices and advances our understanding of thermally-driven transport phenomena in nanofluidic systems.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Thermal Sciences
International Journal of Thermal Sciences 工程技术-工程:机械
CiteScore
8.10
自引率
11.10%
发文量
531
审稿时长
55 days
期刊介绍: The International Journal of Thermal Sciences is a journal devoted to the publication of fundamental studies on the physics of transfer processes in general, with an emphasis on thermal aspects and also applied research on various processes, energy systems and the environment. Articles are published in English and French, and are subject to peer review. The fundamental subjects considered within the scope of the journal are: * Heat and relevant mass transfer at all scales (nano, micro and macro) and in all types of material (heterogeneous, composites, biological,...) and fluid flow * Forced, natural or mixed convection in reactive or non-reactive media * Single or multi–phase fluid flow with or without phase change * Near–and far–field radiative heat transfer * Combined modes of heat transfer in complex systems (for example, plasmas, biological, geological,...) * Multiscale modelling The applied research topics include: * Heat exchangers, heat pipes, cooling processes * Transport phenomena taking place in industrial processes (chemical, food and agricultural, metallurgical, space and aeronautical, automobile industries) * Nano–and micro–technology for energy, space, biosystems and devices * Heat transport analysis in advanced systems * Impact of energy–related processes on environment, and emerging energy systems The study of thermophysical properties of materials and fluids, thermal measurement techniques, inverse methods, and the developments of experimental methods are within the scope of the International Journal of Thermal Sciences which also covers the modelling, and numerical methods applied to thermal transfer.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信