Eliminating lattice defects in UiO-66-NH2 membrane towards high-precision desalination

Wenwen Dong , Jiahui Yan , Taotao Ji , Mingming Wu , Kunpeng Yu , Yi Liu , Wenjing Hu , Yi Liu
{"title":"Eliminating lattice defects in UiO-66-NH2 membrane towards high-precision desalination","authors":"Wenwen Dong ,&nbsp;Jiahui Yan ,&nbsp;Taotao Ji ,&nbsp;Mingming Wu ,&nbsp;Kunpeng Yu ,&nbsp;Yi Liu ,&nbsp;Wenjing Hu ,&nbsp;Yi Liu","doi":"10.1016/j.advmem.2025.100142","DOIUrl":null,"url":null,"abstract":"<div><div>Zirconium-based MOF membranes exhibit significant potential in energy-efficient desalination. Nevertheless, framework defect elimination, which represents an effective protocol to enhance their molecular sieving capacity and operation stability, remains highly challenging to date. In this study, we proposed a framework defect patching strategy to prepare robust UiO-66-NH<sub>2</sub> membrane with Zr<sub>6</sub>O<sub>4</sub>(OH)<sub>4</sub>(OAc)<sub>12</sub> cluster source towards high-efficiency desalination. Ion sieving results indicated that increasing reaction temperature and ratio of ligand to Zr<sub>6</sub>O<sub>4</sub>(OH)<sub>4</sub>(OAc)<sub>12</sub> cluster contributed to framework defect elimination. UiO-66-NH<sub>2</sub> membranes prepared under optimized conditions exhibited superior metal ion rejection rate (Al<sup>3+</sup>: 97.7 ​%) and operation stability over 20 days. Particularly, their water/NaCl separation performance well exceeded majority of reported polycrystalline 3D membranes, offering promising prospects for modulating molecular diffusion kinetics in MOF pores.</div></div>","PeriodicalId":100033,"journal":{"name":"Advanced Membranes","volume":"5 ","pages":"Article 100142"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Membranes","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772823425000168","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Zirconium-based MOF membranes exhibit significant potential in energy-efficient desalination. Nevertheless, framework defect elimination, which represents an effective protocol to enhance their molecular sieving capacity and operation stability, remains highly challenging to date. In this study, we proposed a framework defect patching strategy to prepare robust UiO-66-NH2 membrane with Zr6O4(OH)4(OAc)12 cluster source towards high-efficiency desalination. Ion sieving results indicated that increasing reaction temperature and ratio of ligand to Zr6O4(OH)4(OAc)12 cluster contributed to framework defect elimination. UiO-66-NH2 membranes prepared under optimized conditions exhibited superior metal ion rejection rate (Al3+: 97.7 ​%) and operation stability over 20 days. Particularly, their water/NaCl separation performance well exceeded majority of reported polycrystalline 3D membranes, offering promising prospects for modulating molecular diffusion kinetics in MOF pores.

Abstract Image

消除UiO-66-NH2膜的晶格缺陷,实现高精度脱盐
锆基MOF膜在节能脱盐方面具有巨大的潜力。然而,框架缺陷消除作为提高其分子筛分能力和运行稳定性的有效方案,迄今仍具有很大的挑战性。在本研究中,我们提出了一种框架缺陷修补策略,以Zr6O4(OH)4(OAc)12簇源制备健壮的UiO-66-NH2膜,以实现高效脱盐。离子筛分结果表明,提高反应温度和配体与Zr6O4(OH)4(OAc)12簇的比例有助于消除骨架缺陷。在优化条件下制备的UiO-66-NH2膜具有优异的金属离子截留率(Al3+: 97.7%)和20 d运行稳定性。特别是,它们的水/NaCl分离性能远远超过大多数已报道的多晶3D膜,为调节MOF孔中的分子扩散动力学提供了广阔的前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信