Eliminating lattice defects in UiO-66-NH2 membrane towards high-precision desalination

Wenwen Dong , Jiahui Yan , Taotao Ji , Mingming Wu , Kunpeng Yu , Yi Liu , Wenjing Hu , Yi Liu
{"title":"Eliminating lattice defects in UiO-66-NH2 membrane towards high-precision desalination","authors":"Wenwen Dong ,&nbsp;Jiahui Yan ,&nbsp;Taotao Ji ,&nbsp;Mingming Wu ,&nbsp;Kunpeng Yu ,&nbsp;Yi Liu ,&nbsp;Wenjing Hu ,&nbsp;Yi Liu","doi":"10.1016/j.advmem.2025.100142","DOIUrl":null,"url":null,"abstract":"<div><div>Zirconium-based MOF membranes exhibit significant potential in energy-efficient desalination. Nevertheless, framework defect elimination, which represents an effective protocol to enhance their molecular sieving capacity and operation stability, remains highly challenging to date. In this study, we proposed a framework defect patching strategy to prepare robust UiO-66-NH<sub>2</sub> membrane with Zr<sub>6</sub>O<sub>4</sub>(OH)<sub>4</sub>(OAc)<sub>12</sub> cluster source towards high-efficiency desalination. Ion sieving results indicated that increasing reaction temperature and ratio of ligand to Zr<sub>6</sub>O<sub>4</sub>(OH)<sub>4</sub>(OAc)<sub>12</sub> cluster contributed to framework defect elimination. UiO-66-NH<sub>2</sub> membranes prepared under optimized conditions exhibited superior metal ion rejection rate (Al<sup>3+</sup>: 97.7 ​%) and operation stability over 20 days. Particularly, their water/NaCl separation performance well exceeded majority of reported polycrystalline 3D membranes, offering promising prospects for modulating molecular diffusion kinetics in MOF pores.</div></div>","PeriodicalId":100033,"journal":{"name":"Advanced Membranes","volume":"5 ","pages":"Article 100142"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Membranes","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772823425000168","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Zirconium-based MOF membranes exhibit significant potential in energy-efficient desalination. Nevertheless, framework defect elimination, which represents an effective protocol to enhance their molecular sieving capacity and operation stability, remains highly challenging to date. In this study, we proposed a framework defect patching strategy to prepare robust UiO-66-NH2 membrane with Zr6O4(OH)4(OAc)12 cluster source towards high-efficiency desalination. Ion sieving results indicated that increasing reaction temperature and ratio of ligand to Zr6O4(OH)4(OAc)12 cluster contributed to framework defect elimination. UiO-66-NH2 membranes prepared under optimized conditions exhibited superior metal ion rejection rate (Al3+: 97.7 ​%) and operation stability over 20 days. Particularly, their water/NaCl separation performance well exceeded majority of reported polycrystalline 3D membranes, offering promising prospects for modulating molecular diffusion kinetics in MOF pores.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信