The AhR/P38 MAPK pathway mediates kynurenine-induced cardiomyocyte damage: The dual role of resveratrol in apoptosis and autophagy

IF 6.9 2区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL
Sara Mohiti , Effat Alizadeh , Line S. Bisgaard , Mehrangiz Ebrahimi-Mameghani , Christina Christoffersen
{"title":"The AhR/P38 MAPK pathway mediates kynurenine-induced cardiomyocyte damage: The dual role of resveratrol in apoptosis and autophagy","authors":"Sara Mohiti ,&nbsp;Effat Alizadeh ,&nbsp;Line S. Bisgaard ,&nbsp;Mehrangiz Ebrahimi-Mameghani ,&nbsp;Christina Christoffersen","doi":"10.1016/j.biopha.2025.118015","DOIUrl":null,"url":null,"abstract":"<div><div>Chronic kidney disease increases the risk of cardiovascular disease, partly due to uremic toxins, such as Kynurenine (KYN). While KYN contributes to tissue damage, its role in cardiomyocyte apoptosis and autophagy remains unclear. Resveratrol (RSV) can protect against oxidative stress and inflammation, whereas its specific effects on KYN-induced cardiomyopathy are less understood. This study aimed to investigate the role of KYN in cardiomyocyte apoptosis and autophagy and examine the protective effects of RSV against KYN-induced damage. H9C2 cardiomyocytes were cultured and treated with KYN in presence or absence of RSV or inhibitors of the AhR/Src/MAPKs pathway. Cell viability, apoptosis, mitochondrial membrane potential, and autophagy were assessed using MTT, TUNEL, JC-1, and autophagy detection assays. KYN induced apoptosis, and autophagy in H9C2 cells. RSV pretreatment reduced apoptosis but enhanced autophagy in KYN-treated cells. Inhibiting autophagy or blocking apoptosis, increased KYN-induced apoptosis and autophagy, respectively. Additionally, KYN treatment enhanced AhR activation and the phosphorylation of Src and MAPKs proteins, whereas RSV pretreatment decreased AhR activation and ERK phosphorylation. Inhibitors of p38 MAPK and JNK reduced expression of apoptotic proteins. AhR inhibition also reduced the phosphorylation of p38 MAPK and expression of apoptotic proteins while it enhanced autophagy-related protein expression in KYN treated H9C2 cells. In conclusion, our findings suggest that KYN induces cardiomyocyte apoptosis via the AhR/p38 MAPK pathway whereas RSV can protect against the KYN-induced apoptosis while promoting autophagy. Given the high cardiovascular risk in CKD patients, these findings provide in-sight into potential therapeutic strategies targeting KYN-induced cardiomyopathy.</div></div>","PeriodicalId":8966,"journal":{"name":"Biomedicine & Pharmacotherapy","volume":"186 ","pages":"Article 118015"},"PeriodicalIF":6.9000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedicine & Pharmacotherapy","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0753332225002094","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Chronic kidney disease increases the risk of cardiovascular disease, partly due to uremic toxins, such as Kynurenine (KYN). While KYN contributes to tissue damage, its role in cardiomyocyte apoptosis and autophagy remains unclear. Resveratrol (RSV) can protect against oxidative stress and inflammation, whereas its specific effects on KYN-induced cardiomyopathy are less understood. This study aimed to investigate the role of KYN in cardiomyocyte apoptosis and autophagy and examine the protective effects of RSV against KYN-induced damage. H9C2 cardiomyocytes were cultured and treated with KYN in presence or absence of RSV or inhibitors of the AhR/Src/MAPKs pathway. Cell viability, apoptosis, mitochondrial membrane potential, and autophagy were assessed using MTT, TUNEL, JC-1, and autophagy detection assays. KYN induced apoptosis, and autophagy in H9C2 cells. RSV pretreatment reduced apoptosis but enhanced autophagy in KYN-treated cells. Inhibiting autophagy or blocking apoptosis, increased KYN-induced apoptosis and autophagy, respectively. Additionally, KYN treatment enhanced AhR activation and the phosphorylation of Src and MAPKs proteins, whereas RSV pretreatment decreased AhR activation and ERK phosphorylation. Inhibitors of p38 MAPK and JNK reduced expression of apoptotic proteins. AhR inhibition also reduced the phosphorylation of p38 MAPK and expression of apoptotic proteins while it enhanced autophagy-related protein expression in KYN treated H9C2 cells. In conclusion, our findings suggest that KYN induces cardiomyocyte apoptosis via the AhR/p38 MAPK pathway whereas RSV can protect against the KYN-induced apoptosis while promoting autophagy. Given the high cardiovascular risk in CKD patients, these findings provide in-sight into potential therapeutic strategies targeting KYN-induced cardiomyopathy.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
11.90
自引率
2.70%
发文量
1621
审稿时长
48 days
期刊介绍: Biomedicine & Pharmacotherapy stands as a multidisciplinary journal, presenting a spectrum of original research reports, reviews, and communications in the realms of clinical and basic medicine, as well as pharmacology. The journal spans various fields, including Cancer, Nutriceutics, Neurodegenerative, Cardiac, and Infectious Diseases.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信