Predicting radiology service times for enhancing emergency department management

IF 6.2 2区 经济学 Q1 ECONOMICS
Davide Aloini , Elisabetta Benevento , Marco Berdini , Alessandro Stefanini
{"title":"Predicting radiology service times for enhancing emergency department management","authors":"Davide Aloini ,&nbsp;Elisabetta Benevento ,&nbsp;Marco Berdini ,&nbsp;Alessandro Stefanini","doi":"10.1016/j.seps.2025.102208","DOIUrl":null,"url":null,"abstract":"<div><div>Emergency departments (EDs) are increasingly challenged by overcrowding, resource shortages, and rising demand for care, which compromise operational efficiency and service quality. In response, machine learning (ML) is emerging as a powerful tool for ED management, offering predictive models to enhance real-time decision-making and optimize workflows.</div><div>This research aims to develop an ML-based system to predict service times for X-ray examinations in real-time – the most frequently conducted diagnostics in EDs. Using a dataset of 50,070 x-ray exams from a medium-sized ED, the model incorporates patient characteristics, radiology conditions, and ED status to estimate service times from prescription to report release. A comparative analysis of ML techniques identified Gradient Boosting as the most accurate approach. Additionally, feature importance and SHAP analysis revealed key factors influencing X-ray service times.</div><div>The developed system has the potential to provide ED managers with early warnings of potential delays or critical situations in the radiology unit, enabling proactive interventions and improving patient management.</div></div>","PeriodicalId":22033,"journal":{"name":"Socio-economic Planning Sciences","volume":"99 ","pages":"Article 102208"},"PeriodicalIF":6.2000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Socio-economic Planning Sciences","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0038012125000576","RegionNum":2,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

Abstract

Emergency departments (EDs) are increasingly challenged by overcrowding, resource shortages, and rising demand for care, which compromise operational efficiency and service quality. In response, machine learning (ML) is emerging as a powerful tool for ED management, offering predictive models to enhance real-time decision-making and optimize workflows.
This research aims to develop an ML-based system to predict service times for X-ray examinations in real-time – the most frequently conducted diagnostics in EDs. Using a dataset of 50,070 x-ray exams from a medium-sized ED, the model incorporates patient characteristics, radiology conditions, and ED status to estimate service times from prescription to report release. A comparative analysis of ML techniques identified Gradient Boosting as the most accurate approach. Additionally, feature importance and SHAP analysis revealed key factors influencing X-ray service times.
The developed system has the potential to provide ED managers with early warnings of potential delays or critical situations in the radiology unit, enabling proactive interventions and improving patient management.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Socio-economic Planning Sciences
Socio-economic Planning Sciences OPERATIONS RESEARCH & MANAGEMENT SCIENCE-
CiteScore
9.40
自引率
13.10%
发文量
294
审稿时长
58 days
期刊介绍: Studies directed toward the more effective utilization of existing resources, e.g. mathematical programming models of health care delivery systems with relevance to more effective program design; systems analysis of fire outbreaks and its relevance to the location of fire stations; statistical analysis of the efficiency of a developing country economy or industry. Studies relating to the interaction of various segments of society and technology, e.g. the effects of government health policies on the utilization and design of hospital facilities; the relationship between housing density and the demands on public transportation or other service facilities: patterns and implications of urban development and air or water pollution. Studies devoted to the anticipations of and response to future needs for social, health and other human services, e.g. the relationship between industrial growth and the development of educational resources in affected areas; investigation of future demands for material and child health resources in a developing country; design of effective recycling in an urban setting.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信