{"title":"Interfacial Thickness-Induced Tensile Strengthening Effect of 3D-Printed Interactive Bimaterial Specimens","authors":"Lu Yang, Zesen Cui, Ruiqi Hu and Chao Zhang*, ","doi":"10.1021/acsapm.5c0022710.1021/acsapm.5c00227","DOIUrl":null,"url":null,"abstract":"<p >Functional materials fabricated by using 3D printing are an emerging and cutting-edge research branch in the field of advanced energy, and the mechanical behavior of bimaterial composites is crucial for designing structures with enhanced strength, toughness, and multifunctionality. In this work, the thickness-induced tensile strengthening effect in 3D-printed bimaterial specimens was investigated. Specimens with varying layer thicknesses were fabricated by using a vat photopolymerization (VPP) multimaterial 3D printing process, and tensile tests were conducted to analyze the impact of thickness on the interfacial interaction and overall tensile strength. The experimental results show that reducing the layer thickness of the specimen to 0.2 mm significantly enhances the tensile strength due to improved interfacial bonding and material synergy. The finite element model of the transition region with the equivalent interfacial layer is established based on the microscopic morphology at the interface. Finite element analysis confirmed the experimental results, showing that reducing the layer thickness is beneficial for enhancing tensile strength in bimaterial structures.</p>","PeriodicalId":7,"journal":{"name":"ACS Applied Polymer Materials","volume":"7 6","pages":"3935–3944 3935–3944"},"PeriodicalIF":4.4000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Polymer Materials","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsapm.5c00227","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Functional materials fabricated by using 3D printing are an emerging and cutting-edge research branch in the field of advanced energy, and the mechanical behavior of bimaterial composites is crucial for designing structures with enhanced strength, toughness, and multifunctionality. In this work, the thickness-induced tensile strengthening effect in 3D-printed bimaterial specimens was investigated. Specimens with varying layer thicknesses were fabricated by using a vat photopolymerization (VPP) multimaterial 3D printing process, and tensile tests were conducted to analyze the impact of thickness on the interfacial interaction and overall tensile strength. The experimental results show that reducing the layer thickness of the specimen to 0.2 mm significantly enhances the tensile strength due to improved interfacial bonding and material synergy. The finite element model of the transition region with the equivalent interfacial layer is established based on the microscopic morphology at the interface. Finite element analysis confirmed the experimental results, showing that reducing the layer thickness is beneficial for enhancing tensile strength in bimaterial structures.
期刊介绍:
ACS Applied Polymer Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics, and biology relevant to applications of polymers.
The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates fundamental knowledge in the areas of materials, engineering, physics, bioscience, polymer science and chemistry into important polymer applications. The journal is specifically interested in work that addresses relationships among structure, processing, morphology, chemistry, properties, and function as well as work that provide insights into mechanisms critical to the performance of the polymer for applications.