Ce-Metal Organic Frameworks for Enhanced Chemical Stability and Durability of Sulfonated Polyether Ether Ketone for Proton Exchange Membranes

IF 4.4 2区 化学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Senthil Theerthagiri, Ihsan Budi Rachman, Md Shoriful Islam, Jun-Young Park* and Sun-Ju Song*, 
{"title":"Ce-Metal Organic Frameworks for Enhanced Chemical Stability and Durability of Sulfonated Polyether Ether Ketone for Proton Exchange Membranes","authors":"Senthil Theerthagiri,&nbsp;Ihsan Budi Rachman,&nbsp;Md Shoriful Islam,&nbsp;Jun-Young Park* and Sun-Ju Song*,&nbsp;","doi":"10.1021/acsapm.5c0019610.1021/acsapm.5c00196","DOIUrl":null,"url":null,"abstract":"<p >Proton exchange membrane fuel cells (PEMFCs) face challenges related to limited lifespan and operational reliability, hindering their commercial adoption. Sulfonated polyether ether ketone (SPEEK) has emerged as a promising alternative to Nafion due to its superior thermal stability, chemical resilience, and cost-effectiveness. SPEEK membranes were sulfonated using concentrated sulfuric acid (98%), introducing sulfonic acid (−SO<sub>3</sub>H) groups to enhance proton conductivity. To mitigate chemical degradation while maintaining conductivity, Ce(III)-benzene dicarboxylic acid metal–organic frameworks (Ce-MOFs) were incorporated. These Ce-MOFs scavenge radicals, improving the membrane’s durability and stability. Comprehensive analysis of the physicochemical, thermal, and mechanical properties showed that Ce-MOF addition enhanced conductivity and reduced degradation. The Ce-MOF/SPEEK (1 wt%) nanocomposite membrane achieved 0.215 S/cm at 80 °C and 95% relative humidity, outperforming pristine SPEEK (0.140 S/cm). These findings highlight the potential of Ce-MOF composite PEMs as durable, high-performance materials for next-generation PEMFCs.</p>","PeriodicalId":7,"journal":{"name":"ACS Applied Polymer Materials","volume":"7 6","pages":"3954–3967 3954–3967"},"PeriodicalIF":4.4000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Polymer Materials","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsapm.5c00196","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Proton exchange membrane fuel cells (PEMFCs) face challenges related to limited lifespan and operational reliability, hindering their commercial adoption. Sulfonated polyether ether ketone (SPEEK) has emerged as a promising alternative to Nafion due to its superior thermal stability, chemical resilience, and cost-effectiveness. SPEEK membranes were sulfonated using concentrated sulfuric acid (98%), introducing sulfonic acid (−SO3H) groups to enhance proton conductivity. To mitigate chemical degradation while maintaining conductivity, Ce(III)-benzene dicarboxylic acid metal–organic frameworks (Ce-MOFs) were incorporated. These Ce-MOFs scavenge radicals, improving the membrane’s durability and stability. Comprehensive analysis of the physicochemical, thermal, and mechanical properties showed that Ce-MOF addition enhanced conductivity and reduced degradation. The Ce-MOF/SPEEK (1 wt%) nanocomposite membrane achieved 0.215 S/cm at 80 °C and 95% relative humidity, outperforming pristine SPEEK (0.140 S/cm). These findings highlight the potential of Ce-MOF composite PEMs as durable, high-performance materials for next-generation PEMFCs.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
6.00%
发文量
810
期刊介绍: ACS Applied Polymer Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics, and biology relevant to applications of polymers. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates fundamental knowledge in the areas of materials, engineering, physics, bioscience, polymer science and chemistry into important polymer applications. The journal is specifically interested in work that addresses relationships among structure, processing, morphology, chemistry, properties, and function as well as work that provide insights into mechanisms critical to the performance of the polymer for applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信