Silicone Ionic Liquid-Based Hydrogel for Flexible Strain Sensors with Intrinsically Antifreezing Property

IF 4.4 2区 化学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Yushu Xu, Yanru Chen, Xiaolei Guo, Shihao Wang, Yanyan Deng, Yuanji Li, Hua Wang, Teng Long*, Xiao Cheng* and Chuanjian Zhou*, 
{"title":"Silicone Ionic Liquid-Based Hydrogel for Flexible Strain Sensors with Intrinsically Antifreezing Property","authors":"Yushu Xu,&nbsp;Yanru Chen,&nbsp;Xiaolei Guo,&nbsp;Shihao Wang,&nbsp;Yanyan Deng,&nbsp;Yuanji Li,&nbsp;Hua Wang,&nbsp;Teng Long*,&nbsp;Xiao Cheng* and Chuanjian Zhou*,&nbsp;","doi":"10.1021/acsapm.4c0361210.1021/acsapm.4c03612","DOIUrl":null,"url":null,"abstract":"<p >Conductive hydrogels are garnering increased attention for their application in flexible strain sensors due to their distinctive inherent excellent properties. However, the high water content leads to inadequate antifreezing capability, severely restricting their application in cold environments. Here, an interpenetrating dual-network hydrogel with intrinsic antifreezing property was prepared by introducing silicone-containing imidazolium ionic liquid [SiM]Cl into an acrylic acid gel system. The introduction of silicone composition increases the fracture strength of the hydrogel by 157% to 0.62 MPa. Notably, the existence of ionic liquid [SiM]Cl greatly enhances the hydrogel’s low-temperature resistance, offering it a freezing point as low as −42.9 °C and a breaking elongation of 650% even at −20 °C. The hydrogel has a conductivity of 2.46 mS/cm and shows excellent linear strain-sensing behavior. Flexible sensors fabricated using this hydrogel demonstrate sensitive and responsive performance to human movements, and the array sensors produced through three-dimensional printing technology can accurately reflect the distribution of force and deformation. Furthermore, the hydrogel exhibits favorable pH sensitivity and inhibits the growth of <i>Escherichia coli</i> and <i>Staphylococcus aureus</i> in more than 99%. The silicone ionic liquid-based multifunctional hydrogel in this work provides a noteworthy strategy for designing low-temperature-resistant flexible strain sensors.</p>","PeriodicalId":7,"journal":{"name":"ACS Applied Polymer Materials","volume":"7 6","pages":"3611–3621 3611–3621"},"PeriodicalIF":4.4000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Polymer Materials","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsapm.4c03612","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Conductive hydrogels are garnering increased attention for their application in flexible strain sensors due to their distinctive inherent excellent properties. However, the high water content leads to inadequate antifreezing capability, severely restricting their application in cold environments. Here, an interpenetrating dual-network hydrogel with intrinsic antifreezing property was prepared by introducing silicone-containing imidazolium ionic liquid [SiM]Cl into an acrylic acid gel system. The introduction of silicone composition increases the fracture strength of the hydrogel by 157% to 0.62 MPa. Notably, the existence of ionic liquid [SiM]Cl greatly enhances the hydrogel’s low-temperature resistance, offering it a freezing point as low as −42.9 °C and a breaking elongation of 650% even at −20 °C. The hydrogel has a conductivity of 2.46 mS/cm and shows excellent linear strain-sensing behavior. Flexible sensors fabricated using this hydrogel demonstrate sensitive and responsive performance to human movements, and the array sensors produced through three-dimensional printing technology can accurately reflect the distribution of force and deformation. Furthermore, the hydrogel exhibits favorable pH sensitivity and inhibits the growth of Escherichia coli and Staphylococcus aureus in more than 99%. The silicone ionic liquid-based multifunctional hydrogel in this work provides a noteworthy strategy for designing low-temperature-resistant flexible strain sensors.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
6.00%
发文量
810
期刊介绍: ACS Applied Polymer Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics, and biology relevant to applications of polymers. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates fundamental knowledge in the areas of materials, engineering, physics, bioscience, polymer science and chemistry into important polymer applications. The journal is specifically interested in work that addresses relationships among structure, processing, morphology, chemistry, properties, and function as well as work that provide insights into mechanisms critical to the performance of the polymer for applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信