Polarization-Sensitive Long-Wavelength Infrared Narrowband Thermal Emitter for Anticounterfeiting

Zhengji Wen*, Xuan Zhang, Pengfei Wang, Feng Huang*, Zhengai Chen, Qingzi Li, Xuyang Zhang, Liang Pan, Yu Bu, Ning Dai and Yuchuan Shao*, 
{"title":"Polarization-Sensitive Long-Wavelength Infrared Narrowband Thermal Emitter for Anticounterfeiting","authors":"Zhengji Wen*,&nbsp;Xuan Zhang,&nbsp;Pengfei Wang,&nbsp;Feng Huang*,&nbsp;Zhengai Chen,&nbsp;Qingzi Li,&nbsp;Xuyang Zhang,&nbsp;Liang Pan,&nbsp;Yu Bu,&nbsp;Ning Dai and Yuchuan Shao*,&nbsp;","doi":"10.1021/acsaom.5c0002410.1021/acsaom.5c00024","DOIUrl":null,"url":null,"abstract":"<p >Tailoring the wavelength, bandwidth, directionality, and polarization of thermal radiation is critical for various applications like infrared camouflage, radiative cooling, and gas sensing. In this work, we present a deep-subwavelength bilayer structure that serves as a long-wavelength infrared (LWIR) narrow-band thermal emitter with polarization selectivity. The proposed LWIR thermal emitter basically consists of a tungsten oxide (WO<sub>3</sub>) polar dielectric layer upon an opaque gold (Au) ground plane. Transfer matrix method (TMM) calculations are employed to analytically investigate the optical responses of the thermal emitter. Leveraging the Berreman mode near longitudinal optical (LO) phonon energy of WO<sub>3</sub>, the thermal emitter experimentally realizes high absorption (97.6%) for the TM-polarized state and low absorption (4.2%) for the TE-polarized state (at an incident angle of 60° and a wavelength of 10.12 μm), which shows good agreement with theoretical results. Such excellent polarization-sensitive performance makes our LWIR thermal emitter very promising for optical security features, information encryption, and anticounterfeiting.</p>","PeriodicalId":29803,"journal":{"name":"ACS Applied Optical Materials","volume":"3 3","pages":"764–771 764–771"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Optical Materials","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsaom.5c00024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Tailoring the wavelength, bandwidth, directionality, and polarization of thermal radiation is critical for various applications like infrared camouflage, radiative cooling, and gas sensing. In this work, we present a deep-subwavelength bilayer structure that serves as a long-wavelength infrared (LWIR) narrow-band thermal emitter with polarization selectivity. The proposed LWIR thermal emitter basically consists of a tungsten oxide (WO3) polar dielectric layer upon an opaque gold (Au) ground plane. Transfer matrix method (TMM) calculations are employed to analytically investigate the optical responses of the thermal emitter. Leveraging the Berreman mode near longitudinal optical (LO) phonon energy of WO3, the thermal emitter experimentally realizes high absorption (97.6%) for the TM-polarized state and low absorption (4.2%) for the TE-polarized state (at an incident angle of 60° and a wavelength of 10.12 μm), which shows good agreement with theoretical results. Such excellent polarization-sensitive performance makes our LWIR thermal emitter very promising for optical security features, information encryption, and anticounterfeiting.

Abstract Image

用于防伪的偏振敏感长波红外窄带热发射器
调整热辐射的波长、带宽、方向性和极化对于红外伪装、辐射冷却和气体传感等各种应用至关重要。在这项工作中,我们提出了一种深亚波长双层结构,可作为具有偏振选择性的长波红外(LWIR)窄带热发射器。所提出的低波长红外热发射器基本上由不透明金(Au)地平面上的氧化钨(WO3)极性介电层组成。采用传递矩阵法(TMM)对热发射器的光学响应进行了分析研究。利用WO3的Berreman模式近纵向光学(LO)声子能量,热发射器在实验中实现了tm偏振态的高吸收(97.6%)和te偏振态(入射角度为60°,波长为10.12 μm)的低吸收(4.2%),与理论结果吻合较好。这种优异的偏振敏感性能使我们的LWIR热发射器在光学安全特性,信息加密和防伪方面非常有前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Optical Materials
ACS Applied Optical Materials 材料科学-光学材料-
CiteScore
1.10
自引率
0.00%
发文量
0
期刊介绍: ACS Applied Optical Materials is an international and interdisciplinary forum to publish original experimental and theoretical including simulation and modeling research in optical materials complementing the ACS Applied Materials portfolio. With a focus on innovative applications ACS Applied Optical Materials also complements and expands the scope of existing ACS publications that focus on fundamental aspects of the interaction between light and matter in materials science including ACS Photonics Macromolecules Journal of Physical Chemistry C ACS Nano and Nano Letters.The scope of ACS Applied Optical Materials includes high quality research of an applied nature that integrates knowledge in materials science chemistry physics optical science and engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信