{"title":"Semimetal/Substrate Cavities Enabling Industrial Materials for Structural Coloring","authors":"Fernando Chacon-Sanchez*, and , Rosalia Serna, ","doi":"10.1021/acsaom.4c0052110.1021/acsaom.4c00521","DOIUrl":null,"url":null,"abstract":"<p >Color coatings are essential for the identification and safety of everyday objects as well as for the protection of surfaces from deterioration, in addition to their well-known use for enhancing their aesthetic appeal. However, conventional dyes and pigments are a major source of contamination and degrade easily over time. Structural coloring is a sustainable alternative capable of producing high-quality colors with nanometric structures. Nonetheless, many approaches to structural coloring rely on lithography or expensive back-reflectors made from noble metals. In this study, we approach surface coloring using lightweight, sustainable, and scalable optical coatings with subwavelength thickness. This method allows industrial surfaces to function as active elements in the color-generating structure, eliminating the need for metallic mirrors. The design is based on a semimetal/substrate cavity (SSC), directly deposited onto the surface to be colored. As a proof of concept, we designed and fabricated SSCs on silicon and stainless steel substrates, using ultrathin films of bismuth (Bi) and aluminum oxide (Al<sub>2</sub>O<sub>3</sub>) as the cavity components. These SSCs display vivid, well-defined colors with excellent angular stability for a cavity. Moreover, the SSC design can be adapted with other semimetal/dielectric combinations and offers an efficient, daylight-friendly, sustainable, and lightweight solution for functional coloration of everyday objects as well as components for industrial and technical applications.</p>","PeriodicalId":29803,"journal":{"name":"ACS Applied Optical Materials","volume":"3 3","pages":"727–736 727–736"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsaom.4c00521","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Optical Materials","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsaom.4c00521","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Color coatings are essential for the identification and safety of everyday objects as well as for the protection of surfaces from deterioration, in addition to their well-known use for enhancing their aesthetic appeal. However, conventional dyes and pigments are a major source of contamination and degrade easily over time. Structural coloring is a sustainable alternative capable of producing high-quality colors with nanometric structures. Nonetheless, many approaches to structural coloring rely on lithography or expensive back-reflectors made from noble metals. In this study, we approach surface coloring using lightweight, sustainable, and scalable optical coatings with subwavelength thickness. This method allows industrial surfaces to function as active elements in the color-generating structure, eliminating the need for metallic mirrors. The design is based on a semimetal/substrate cavity (SSC), directly deposited onto the surface to be colored. As a proof of concept, we designed and fabricated SSCs on silicon and stainless steel substrates, using ultrathin films of bismuth (Bi) and aluminum oxide (Al2O3) as the cavity components. These SSCs display vivid, well-defined colors with excellent angular stability for a cavity. Moreover, the SSC design can be adapted with other semimetal/dielectric combinations and offers an efficient, daylight-friendly, sustainable, and lightweight solution for functional coloration of everyday objects as well as components for industrial and technical applications.
期刊介绍:
ACS Applied Optical Materials is an international and interdisciplinary forum to publish original experimental and theoretical including simulation and modeling research in optical materials complementing the ACS Applied Materials portfolio. With a focus on innovative applications ACS Applied Optical Materials also complements and expands the scope of existing ACS publications that focus on fundamental aspects of the interaction between light and matter in materials science including ACS Photonics Macromolecules Journal of Physical Chemistry C ACS Nano and Nano Letters.The scope of ACS Applied Optical Materials includes high quality research of an applied nature that integrates knowledge in materials science chemistry physics optical science and engineering.