Kraft Lignin Modification and Application as Aqueous Binder for Carbon Anode in Lithium Battery

IF 4.4 2区 化学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Nagore Izaguirre, Gabriele Lingua*, Alessandro Piovano, Claudio Gerbaldi, David Mecerreyes and Jalel Labidi*, 
{"title":"Kraft Lignin Modification and Application as Aqueous Binder for Carbon Anode in Lithium Battery","authors":"Nagore Izaguirre,&nbsp;Gabriele Lingua*,&nbsp;Alessandro Piovano,&nbsp;Claudio Gerbaldi,&nbsp;David Mecerreyes and Jalel Labidi*,&nbsp;","doi":"10.1021/acsapm.4c0409910.1021/acsapm.4c04099","DOIUrl":null,"url":null,"abstract":"<p >Although lithium batteries contribute to a green energy economy, most of the materials used in their production are fossil-based. A way to diminish the carbon footprint is by utilizing sustainable and biobased products like lignin, which is highly abundant in nature and vastly produced industrially as a low-value side product in the paper and pulp industry. In the current work, chemically modified Kraft lignins (KL) with different chemical functionalities such as carboxymethyl and sulfomethyl were applied as binder materials for preparing active carbon-based electrodes for lithium metal lab-scale battery cells. The optimization of the lignin binders through functionalization allowed for a significantly enhanced aqueous processability and performance of anodic electrodes composed of hard carbon as the electroactive material and carbon black as the conducting additive. Battery performances were comparable with the state-of-the-art biopolymer binders carboxymethylcellulose (CMC) reaching specific capacity values of 170 mA h g<sup>–1</sup>. The functionalization shows an alternative approach to the valorization of lignin in high-tech applications.</p>","PeriodicalId":7,"journal":{"name":"ACS Applied Polymer Materials","volume":"7 6","pages":"3764–3773 3764–3773"},"PeriodicalIF":4.4000,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Polymer Materials","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsapm.4c04099","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Although lithium batteries contribute to a green energy economy, most of the materials used in their production are fossil-based. A way to diminish the carbon footprint is by utilizing sustainable and biobased products like lignin, which is highly abundant in nature and vastly produced industrially as a low-value side product in the paper and pulp industry. In the current work, chemically modified Kraft lignins (KL) with different chemical functionalities such as carboxymethyl and sulfomethyl were applied as binder materials for preparing active carbon-based electrodes for lithium metal lab-scale battery cells. The optimization of the lignin binders through functionalization allowed for a significantly enhanced aqueous processability and performance of anodic electrodes composed of hard carbon as the electroactive material and carbon black as the conducting additive. Battery performances were comparable with the state-of-the-art biopolymer binders carboxymethylcellulose (CMC) reaching specific capacity values of 170 mA h g–1. The functionalization shows an alternative approach to the valorization of lignin in high-tech applications.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
6.00%
发文量
810
期刊介绍: ACS Applied Polymer Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics, and biology relevant to applications of polymers. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates fundamental knowledge in the areas of materials, engineering, physics, bioscience, polymer science and chemistry into important polymer applications. The journal is specifically interested in work that addresses relationships among structure, processing, morphology, chemistry, properties, and function as well as work that provide insights into mechanisms critical to the performance of the polymer for applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信