{"title":"Simulation of Spring Discharge Using Deep Learning, Considering the Spatiotemporal Variability of Precipitation","authors":"Chunmei Ma, Haoyu Jiao, Yonghong Hao, Tian-Chyi Jim Yeh, Junfeng Zhu, Huiqing Hao, Jiahui Lu, Jiankang Dong","doi":"10.1029/2024wr037449","DOIUrl":null,"url":null,"abstract":"Sparse precipitation data in karst catchments challenge hydrologic models to accurately capture the spatial and temporal relationships between precipitation and karst spring discharge, hindering robust predictions. This study addresses this issue by employing a coupled deep learning model that integrates a variation autoencoder (VAE) for augmenting precipitation and a long short-term memory (LSTM) network for karst spring discharge prediction. The VAE contributes by generating synthetic precipitation data through an encoding-decoding process. This process generalizes the observed precipitation data by deriving joint latent distributions with improved preservation of temporal and spatial correlations of the data. The combined VAE-generated precipitation and observation data are used to train and test the LSTM to predict spring discharge. Applied to the Niangziguan spring catchment in northern China, the average performance of NSE, root mean square error, mean absolute error, mean absolute percentage error, and log NSE of our coupled VAE/LSTM model reached 0.93, 0.26, 0.15, 1.8, and 0.92, respectively, yielding 145%, 52%, 63%, 70% and 149% higher than an LSTM model using only observations. We also explored temporal and spatial correlations in the observed data and the impact of different ratios of VAE-generated precipitation data to actual data on model performances. This study also evaluated the effectiveness of VAE-augmented data on various deep-learning models and compared VAE with other data augmentation techniques. We demonstrate that the VAE offers a novel approach to address data scarcity and uncertainty, improving learning generalization and predictive capability of various hydrological models. However, we recognize that innovations to address hydrologic problems at different scales remain to be explored.","PeriodicalId":23799,"journal":{"name":"Water Resources Research","volume":"183 1","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Resources Research","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1029/2024wr037449","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Sparse precipitation data in karst catchments challenge hydrologic models to accurately capture the spatial and temporal relationships between precipitation and karst spring discharge, hindering robust predictions. This study addresses this issue by employing a coupled deep learning model that integrates a variation autoencoder (VAE) for augmenting precipitation and a long short-term memory (LSTM) network for karst spring discharge prediction. The VAE contributes by generating synthetic precipitation data through an encoding-decoding process. This process generalizes the observed precipitation data by deriving joint latent distributions with improved preservation of temporal and spatial correlations of the data. The combined VAE-generated precipitation and observation data are used to train and test the LSTM to predict spring discharge. Applied to the Niangziguan spring catchment in northern China, the average performance of NSE, root mean square error, mean absolute error, mean absolute percentage error, and log NSE of our coupled VAE/LSTM model reached 0.93, 0.26, 0.15, 1.8, and 0.92, respectively, yielding 145%, 52%, 63%, 70% and 149% higher than an LSTM model using only observations. We also explored temporal and spatial correlations in the observed data and the impact of different ratios of VAE-generated precipitation data to actual data on model performances. This study also evaluated the effectiveness of VAE-augmented data on various deep-learning models and compared VAE with other data augmentation techniques. We demonstrate that the VAE offers a novel approach to address data scarcity and uncertainty, improving learning generalization and predictive capability of various hydrological models. However, we recognize that innovations to address hydrologic problems at different scales remain to be explored.
期刊介绍:
Water Resources Research (WRR) is an interdisciplinary journal that focuses on hydrology and water resources. It publishes original research in the natural and social sciences of water. It emphasizes the role of water in the Earth system, including physical, chemical, biological, and ecological processes in water resources research and management, including social, policy, and public health implications. It encompasses observational, experimental, theoretical, analytical, numerical, and data-driven approaches that advance the science of water and its management. Submissions are evaluated for their novelty, accuracy, significance, and broader implications of the findings.