{"title":"Non-Volatile Reconfigurable Four-Mode van der Waals Transistors and Transformable Logic Circuits","authors":"Junzhe Kang, Hanwool Lee, Ashwin Tunga, Xiaotong Xu, Ye Lin, Zijing Zhao, Hojoon Ryu, Chun-Chia Tsai, Takashi Taniguchi, Kenji Watanabe, Shaloo Rakheja, Wenjuan Zhu","doi":"10.1021/acsnano.4c16862","DOIUrl":null,"url":null,"abstract":"Emerging applications in data-intensive computing and circuit security demand logic circuits with high functional density, reconfigurability, and energy efficiency. Here, we demonstrate nonvolatile reconfigurable four-mode field-effect transistors (NVR4M-FETs) based on two-dimensional (2D) MoTe<sub>2</sub> and CuInP<sub>2</sub>S<sub>6</sub> (CIPS), offering both polarity switching and threshold voltage modulation. The device exploits the ferroelectric polarization of CIPS at the source/drain regions to achieve dynamic control over the transistor polarity, enabling transitions between n-type and p-type states through polarization-induced local electrostatic doping. Additionally, multilayer graphene floating gates are incorporated to modulate the threshold voltage, yielding four distinct nonvolatile operating modes: n-type logic, p-type logic, always-on memory, and always-off memory. Leveraging the four-mode property, the NVR4M-FET can function as a one-transistor-per-bit ternary content-addressable memory (TCAM). In addition, we demonstrate the construction of transformable logic gates with 14 distinct logic functions using two NVR4M-FETs and a reconfigurable half a dder/subtractor using three NVR4M-FETs integrated with load resistors. Furthermore, we show that a 2-input look-up table can be achieved with eight NVR4M-FETs compared to 12 transistors using reconfigurable transistors, highlighting the potential of NVR4M-FETs for high-density logic circuits. These results underscore the potential of NVR4M-FETs as essential building blocks for energy-efficient, in-memory computing, and secure hardware applications.","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"9 1","pages":""},"PeriodicalIF":15.8000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.4c16862","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Emerging applications in data-intensive computing and circuit security demand logic circuits with high functional density, reconfigurability, and energy efficiency. Here, we demonstrate nonvolatile reconfigurable four-mode field-effect transistors (NVR4M-FETs) based on two-dimensional (2D) MoTe2 and CuInP2S6 (CIPS), offering both polarity switching and threshold voltage modulation. The device exploits the ferroelectric polarization of CIPS at the source/drain regions to achieve dynamic control over the transistor polarity, enabling transitions between n-type and p-type states through polarization-induced local electrostatic doping. Additionally, multilayer graphene floating gates are incorporated to modulate the threshold voltage, yielding four distinct nonvolatile operating modes: n-type logic, p-type logic, always-on memory, and always-off memory. Leveraging the four-mode property, the NVR4M-FET can function as a one-transistor-per-bit ternary content-addressable memory (TCAM). In addition, we demonstrate the construction of transformable logic gates with 14 distinct logic functions using two NVR4M-FETs and a reconfigurable half a dder/subtractor using three NVR4M-FETs integrated with load resistors. Furthermore, we show that a 2-input look-up table can be achieved with eight NVR4M-FETs compared to 12 transistors using reconfigurable transistors, highlighting the potential of NVR4M-FETs for high-density logic circuits. These results underscore the potential of NVR4M-FETs as essential building blocks for energy-efficient, in-memory computing, and secure hardware applications.
期刊介绍:
ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.